10574

01 - 2025

POWER TM

Instructions manual

CONTENTS

1 -	INTRODUCTION	5
2 -	SAFETY ADVISE	5
	2.1. General safety advise	
	2.2. Safety standards for refrigerant	
3 -	POSSIBLE TYPES OF ASSEMBLIES	
	TRANSPORT	
-	4.1 Transport	
	4.2 Receipt of goods	
	4.3 Unit identification	
5 -	HANDLING	
	OPERATION LIMITS	
	POSITIONING AND INSTALLATION	
	7.1 Storage	
	7.1 Storage 7.2 Choice of location	
	7.3 Antivibrators assembly (silent-blocks)	
	7.4 Pre-assembly roof curb (optional)	
	7.5 Centres of gravity, weight and reactions in the supports	
	7.6 Recommended service clearance	
8.	ELECTRICAL CONNECTION	
J -	8.1 Installation norms	
	8.2 Power supply	
	8.3 Wire sizing	
	8.4 Electrical cabinet	
	8.5 Vectic electronic control	
	8.6 Customer connection	
	8.6 Location of sensors on the machine.	
	8.7 Sensors connection by the costumer	29
9 -	FANS AND AIR DUCTS	
	9.1 Checks in the axial fans	
	9.2 Checks in the EC plug-fans	
	9.3 Checks in the centrifugal fans (optional)	
	9.4 Air ducts connections	33
10	· CONDENSATE DRAIN	34
	SAFETY ELEMENTS	
	FACTORY OPTIONS AND ACCESSORIES	
	12.1 Dampers hoods	
	12.2 Stop-drop on the fresh air intake	
	12.3 Passive recovery (CW assembly)	
	12.4 Air filters	
	12.5 Heat recovery coil	
	12.6 Stop-drop in the indoor coil	41
	12.7 Electrical heaters	41
	12.8 Hot water coil	42
	12.9 Gas burner	43
	12.10 Cooling recovery circuit (CR and CT assemblies)	53
	12.11 Zoning of the air flow	54
13-	COMMISSIONING	55
	13.1 Checks prior to commissioning	55
	13.2 Possible problems at commissioning	56
	13.3 Operational checks	56
14	MAINTENANCE	57
	14.1 General recommendations	57
	14.2 Servicing	57
	14.3 Access to the main components	58
15-	CONTROL AND ANALYSIS OF BREAKDOWNS	65
16-	FINAL SHUTDOWN	66

ORIGINAL TEXT: SPANISH VERSION

1 - INTRODUCTION

The **VECTIOS**^{POWER™} packaged rooftop range consists of autonomous and compact air-air units of horizontal design, rooftop type.

- RPJ R-454B series: units for cooling operation.
- IPJ R-454B and R-410A series: units for reversible heat pump operation.

These units are designed to be installed outdoors, in a free field-type, well ventilated area. It is user's responsibility to ensure that the final installation respects all local, national and international regulations.

The units are connected directly to an air distribution ductwork without additional elements or equipment, pipes, cables, etc. taking no floor space at all. This design reduces the cost of installation, facilitates a quick connection and ensures reliable operation.

- The units comply with European Directives:
- Machinery Directive 2006/42/EC (MD)
- Pressure Equipment Directive 2014/68/EU (PED):
 - * R-410A: Category 2
 - * R-454B: Category 3
- Electromagnetic Compatibility Directive 2014/30/EU (EMC)

- Eco-design Directive 2009/125/EC (Eco-design)
- Regulation (EU) 2016/2281 SEER/SEPR HT
- Harmonized Standard: EN 378-2:2016 (Refrigerating systems and heat pumps - Safety and environmental requirements. Part 2: Design, construction, testing, marking and documentation)

After manufacturing, all units are charged with the selected refrigerant: R-410A or R-454B, and are tested at the factory, verifying the correct operation of all their components within the operating range for which they are intended.

Note: These units are prepared for the replacement of R-410A refrigerant by R454B on site. The necessary elements for this change are supplied in a kit. All the instructions for carrying out this retrofit are explained in a separate document (NA21692B).

Technicians who install, commission, operate and service the unit must possess the necessary training and certifications, understand the instructions given in this manual and be familiar with the specific technical characteristics of the installation site.

2 - SAFETY ADVISE

2.1. General safety advise

Units are designed to provide a very high level of safety during installation, start-up, operation and maintenance.

They will provide safe and reliable service when operated within their application range.

It is required to follow the recommendations and instructions in this brochure, the labels, and the specific instructions.

Compliance with the norms and regulations in effect is mandatory. It is recommended to consult the competent authorities regarding the applicable regulations for users of units or components under pressure. The characteristics of these units or components are included on the plates of characteristics or in the regulatory documentation provided with the product.

To avoid any risk of accident during installation, commissioning or maintenance, it is obligatory to take into consideration the following specifications for the units: refrigerated circuits under pressure, refrigerant presence, electrical voltage presence and implantation place.

All operations on the unit must be carried out by authorized, qualified and trained people to do it using appropriate tools.

All refrigerant charging, removal and draining operations must be carried out by a qualified technician and with the correct equipment for the unit. Any inappropriate handling can lead to uncontrolled fluid or pressure leaks.

All persons who have to work with the equipment must wear personal protective equipment adapted to the intervention on the unit:

- · Safety shoes.
- Safety gloves or specific hand protection (cut resistant gloves, chemical gloves, thermic gloves, ...).
- Head protection.
- Ears protection.
- Eyes or face protection (safety glasses, goggles, facial shed).

• A2L detector, in units with A2L gas (R-454B).

Additional equipment may be required, depending on the risk analysis that must be done prior to any intervention.

The unit must be installed in a place that is not accessible to the public or protected against access by non-authorized persons.

Do not modify or bypass any of the safety guards or switched in the system.

Caution: Before intervening in the unit, verify that the main power to the unit is cut off. An electric shock can cause personal damage. The main disconnect switch is located in the unit's electrical cabinet.

Risk of falling: No part of the unit must be used as a walkway, rack or support. Use a platform, or staging to work at higher levels.

It is mandatory to use all required PPE for work at height. Pay special attention to units with lower supply and/or return.

In heat pumps, during operation in heating mode, condensation water falls directly to the ground and action is required to prevent slipping hazard.

Periodically check and repair or if necessary replace any component or piping that shows signs of damage. The refrigerant lines can break under the weight and release refrigerant, causing personal injury.

The compressor and line surfaces can reach temperatures above 100°C causing burns to the body. In the same fashion, under certain conditions these surfaces can reach very cold temperatures that can cause freezing risks.

No combustible matter should be placed within 6.5 metres of the unit.

Risk of explosion: Never exceed the specified maximum operating pressures. Verify the allowable maximum high-side and low-side test pressures by checking the instructions in this manual and the pressures given on the unit name plate.

2 - SAFETY ADVISE

Important: These units are prepared to withstand a maximum available pressure of 800 Pa. If there is a higher pressure, deformation, breakage, etc., may occur.

In the case of an installation fire test, the unit can be deformed and/ or broken. It is necessary to foresee this test and to take appropriate measures.

2.2. Safety standards for refrigerant

Important: These units contain a fluorinated greenhouse gas covered by the Kyoto protocol.

All interventions on the refrigerating circuit must be performed in accordance with applicable legislation.

Within the European Union, it is necessary to observe regulation (EU) No.517/2014, known as F-Gas, over **Certain greenhouse effect fluoride gases**.

The operator is bound by the obligation to perform periodical sealing tests on the refrigerating circuit according to the regulation (EU) No.517/2014. Please, consult the frequency of tests in chapter of "Maintenance".

Important: the type of refrigerant included in the unit can be consulted on the name plate, see section 4.3.

Type of refrigerant	R-410A	R-454B		
Global warming potential (GWP)	2.088	466		
Flammability class	A1	A2L		

Ensure that refrigerant is never released to the atmosphere when the equipment is installed, maintained or sent for disposal.

It is prohibited to deliberately release refrigerant into the atmosphere. The operator must ensure that any refrigerant recovered is recycled, regenerated or destroyed.

Always remember that refrigeration systems contain pressurised liquids and vapours; and that some surfaces can reach extreme temperatures under certain conditions.

Limit values for R-410A	High p	ressure	Low pressure		
Admissible pressure min. / max. (bar)	-1	42	-1	24	
Maximum admissible temperature (°C)	70	135		50	
Minimum admissible temperature (°C)		-30		-30	
Safety pressure switch setting (bar)	42				

Limit values for R-454B	High p	ressure	Low pressure		
Admissible pressure min. / max. (bar)	-1	40.5	-1	24	
Maximum admissible temperature (°C)	70	135		50	
Minimum admissible temperature (°C)		-30		-30	
Safety pressure switch setting (bar)	40.5				

All necessary provisions must be made when the system is partially opened: ensure the part of the circuit concerned is not pressurised.

Ensure good ventilation, as accumulation of refrigerant in an enclosed space can displace oxygen and cause asphyxiation or explosions.

Inhalation of high concentrations of vapour is harmful and may cause heart irregularities, unconsciousness, or death. Vapour is heavier than air and reduces the amount of oxygen available for breathing. These products cause eye and skin irritation. Decomposition products are hazardous.

Avoid contact with liquid refrigerant. Wash any spills from the skin with soap and water. If liquid refrigerant enters the eyes, immediately and abundantly flush the eyes with water and consult a doctor.

The accidental releases of the refrigerant, due to small leaks or significant discharges following the rupture of a pipe or an unexpected

release from a relief valve, can cause frostbites and burns to personnel exposed. Do not ignore such injuries. Installers, owners and especially service engineers for these units must:

- Seek medical attention before treating such injuries.
- Have access to a first-aid kit, especially for treating eye injuries.

Refrigerant R-410A

According to EN 378-1, R-410A belongs to the A1/A1 group, i.e. with high safety both in the mix and also in the case of a leak.

Although it is not flammable, keep them away from open flames (e.g. cigarettes) as temperatures of over 300°C cause their vapours to break down and form phosgene, hydrogen fluoride, hydrogen chloride and other toxic compounds. These compounds may produce severe physiological consequences if accidentally inhaled or swallowed.

In case of a leak:

- To detect leaks, an electronic leak detector, an ultraviolet lamp or soapy water must be used. Flame detectors do not help.
- If a leak occurs or if the refrigerant becomes contaminated (e.g. by a short circuit in a motor) remove the complete charge using an specific recovery unit for R-410A.
- The refrigerant must be stored in mobile certified containers.
- Repair the leak detected and recharge the circuit with the total refrigerant charge, as indicated on the unit name plate. Only charge liquid refrigerant at the liquid line.

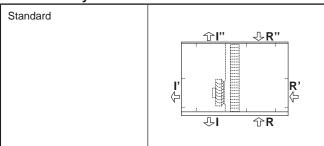
Refrigerant R-454B

According to EN 378-1, refrigerant R-454B belongs to the A2L group, that is, non-toxic and low flammability, so it only requires minimal precautions for a completely safe operation.

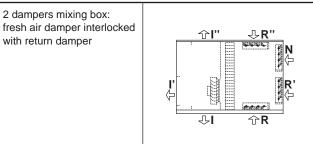
Always use tools qualified for A2L refrigerants according to EN 378 or ISO 817.

Risk of flammability: with A2L refrigerant, always use an A2L refrigerant detector when near the unit. Default potentially flammable zone is 0.6 metres around the unit. See section 7.2.

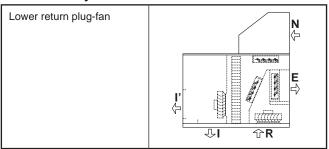
Never apply an open flame or live steam to a refrigerant container. Dangerous overpressure can result.

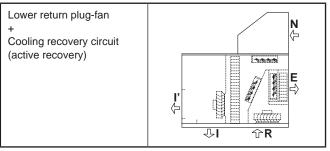

In case of combustion of refrigerant, do not clean combustion byproducts with water, the mixture is highly corrosive.

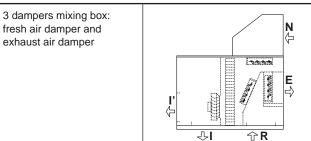
In case of a leak:

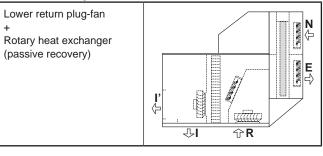

- To detect leaks, an electronic leak detector, must be used.
- If a leak occurs or if the refrigerant becomes contaminated (e.g. by a short circuit in a motor) remove the complete charge using an specific recovery unit for A2L flammable refrigerants.
- The refrigerant must be stored in mobile certified containers. In this case a special bottle shall be used, with the top painted in red and threaded to the left (opposite direction to R-410A). Vacuum the recovery bottle to remove the air before filling it with flammable refrigerant.
- Use a vacuum pump, dual effect and anti-spark based on DIN 8975.
- Do not mix flammable refrigerants with other types of refrigerants in a recovery bottle. Label the recovery bottle to show that it contains a flammable substance.
- Check that there are no hazardous or combustible objects nearby and make sure that in case of fire the extinguisher is nearby. The fire extinguisher must be appropriate to the system and the refrigerant type.
- Always check that there is no refrigerant in the cooling circuit, rinsing with nitrogen before welding, and checking that the nitrogen flows correctly.
- Repair the leak detected and recharge the circuit with the total refrigerant charge, as indicated on the unit name plate. Only charge liquid refrigerant at the liquid line.

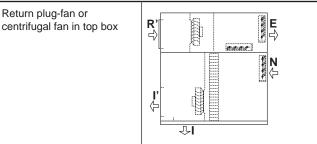
Depending on the indoor airflow direction

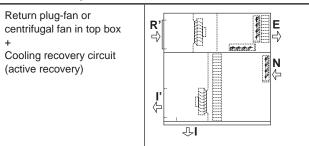

C0 assembly


CS assembly


CP assembly


CR assembly


CK assembly (upon request)


CW assembly

CQ assembly

CT assembly

CL assembly (upon request)

Return plug-fan in top box + Rotary heat exchanger (passive recovery)	
	Ľ ↓

Legend

I	Lower air supply	R	Lower air return
ľ	Lateral air supply	R'	Lateral air return
l"	Upper air supply	R"	Upper air return
Ν	Fresh air intake	Е	Exhaust air outlet

Note: only one of the three possible options (lower, lateral or upper) can be selected for both, supply and return.

Indoor airflow direction (Group 25)

0	Lower supply and lower return	3	Lateral supply and lateral return	6	Upper supply and lateral return
1	Lateral supply and lower return	4	Upper supply and lower return	7	Lower supply and upper return
2	Lower supply and lateral return	5	Lateral supply and upper return	8	Upper supply and upper return

4.1 Transport

Caution: If the unit contains refrigerant R-454B (A2L fluid) specific transport safety standards must be complied with:

• Road transport: UN 3358 Refrigerating machines, containing flammable, non-toxic, liquefied gas.

Transport through the Eurotunnel and through tunnels with category D and E is not permitted.

- Maritime transport: IMDG (International Maritime Dangerous Goods) code: DS 291.
- Air transport: not permitted.

The container must be identified according to UN 3358.

Do not approach the container or truck in the presence of an open flame, an electrical power source, a mobile phone, or any other heat source.

Important: the type of refrigerant included in the unit can be consulted on the name plate, see section 4.3.

4.2 Receipt of goods

Check the unit for any damage or missing components upon delivery.

Check that the unit and the accessories have not been damaged during transport and that no parts are missing. If the unit and theaccessories have been damaged or the shipment is incomplete, send a claim to the shipping company.

It is necessary to check on the name plate that this is the model requested.

Important: The serial number must be used in all correspondence regarding the unit.

4.3 Unit identification

Markings (name plate, punch marks, labels) must remain visible. They must not be altered, removed or modified.

Name plate

All units bear, legibly and indelibly, a name plate located in a prime space, as appears in the attached image.

Año\An.Year Ref\Reference	No Serie\serial Nbr.
1 2	3
Producto\Product\Produit	
4	
Ref. Produit\Item Nbr	
5 6	7
Tension/Voltage Kit Elec.	Max.Intensidad\Intensité\Current
8 9	10
Refrigerant/GWP(PCA) Refrig.KG (Fábrica\Factory\Usine)/Co2 Teq.	
11 12	
PSmax(AP\HP) PSmax(BP\LP) Temp. Max./ IP	Peso\Poids\Weight
13 14 15	16
CARRIER, Route de Thil 01120, MONTLUEL, France	(E 0094
UK Importer: Toshiba Carrier UK Ltd, Porsham Close, Roborough, Plymouth, PL6 7DB	
Contient des gaz à effet de serre fluorés \ Contains fluorinated greenhouse gases re Contiene gases fluorados de efecto invernadero regulados por el prot	

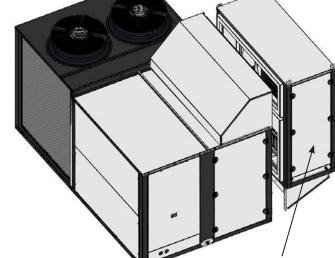
Legend

- 1 Year of manufacture
- 2 Commercial product name
- 3 Serial number
- 4 Description of the product
- 5 Purchase order number
- 6 Sales order number
- 7 Work order number
- 8 Power supply
- 9 Power output of the auxiliary electrical heaters kit (optional) (kW)
- 10 Maximum absorbed current under full load (A) (including the electrical kit)
- 11 Type of refrigerant: R-410A or R-454B
- 12 Refrigerant content (kg) and Environment impact (CO₂ Teq.)
- 13 Maximum service pressure in the high pressure side (R-410A = 42 bar / R-454B = 40,5 bar)
- 14 Maximum service pressure in the low pressure side (R-410A = 24 bar / R-454B = 24 bar)
- 15 Maximum operating temperature (refer to "Opration limits") Maximum shipment and storage temperature: +50°C Electrical protection rating: IP54
- 6 Operation weight (kg) (empty weight + fluid + refrigerant)

5 - HANDLING

These machines must be unloaded and positioned by a specialist handling company using the appropriate, standardised tools.

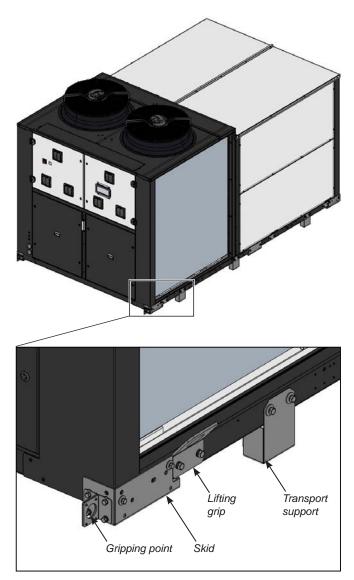
The unit must be handled with care to avoid transport damage.


Do not remove the protective packaging and the transport supports until the unit is in its final location.

Before handling, check that the path leading to the installation location is accessible and free from obstacles.

Important: the rotary heat exchanger (CW assembly) is supplied disassembled with the unit, for installation on site.

It is always mandatory to grasp the unit by the points intended for that purpose, as described in this chapter.


Any handling of the unit by other means or by gripping points different from those described here may be dangerous for both the unit and the personnel who are carrying out the discharging or transport work.

Heat recovery module

visible. They	16	Ele

The unit's beams are fitted with the following elements to allow handling:

Check that all the handling elements are properly screwed.

• Rigging points (grips) to attach the slings of the crane.

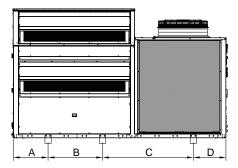
Important: all rigging points must be used.

These rigging points are identified with labels such as the one shown in the image. These are the only points that can be used to lift the unit.

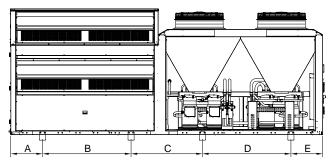
• Transport supports.

These elements must be removed before starting the installation of the unit. They are secured to the unit by means of M10 screws. Important: The transport supports are not designed to drag the unit.

• Skids in case of transport in a container.


In case of container transport, the unit incorporates skids that facilitate the unloading.

This method will be used only when it is possible to place the transport box (trailer, maritime container, etc.) at the same height as the unloading platform (for example, a dock). To do so, there are two gripping point that have to be used for the drag of the unit from the box.


After unloading, the transport supports and the lifting grips (both supplied with the unit) have to be mounted (tightening torque of screws 25 Nm).

The following drawings show the position in which the transport supports are to be placed:

Models 0420 to 0720:

Models 0760 to 1200:

PJ		Dis	stances (m	ım)	D E 43,5 -				
FJ	А	В	С	D	E				
0420 to 0500	640,5	1440	1080	643,5	-				
0560 to 0720	684,5	1440	1440	643,5	-				
0760 to 0960	684,5	1440	1080	1440	643,5				
1100 to 1200	643,5	1440	1811	1800	643,5				

The skids must be removed before starting the installation of the unit. They are secured to the unit by means of M8 screws.

Handling with forklift truck

Models 0420 to 0720 can be transported safely by using a forklift truck. The transport supports make it easy to insert the forks.

These forks must come in on the side of the unit, ensuring that the centre of gravity of the unit remains within the forks, because a misbalance in the transport may cause the unit to turn over and fall from the forklift truck.

Note: the module with the rotary heat exchanger (CW assembly) includes two guides in its base frame to accommodate the forks.

The recommended length for the forks will be bigger than the unit width (see table on next page), so that the entire weight-bearing structure of the unit can be supported on the forklift truck.

The standards and recommendations of the forklift truck must also be respected with regards to the maximum load, inclination of the fork carriage, elevation of the load for transport, and, in particular, the maximum speed.

Handling with crane

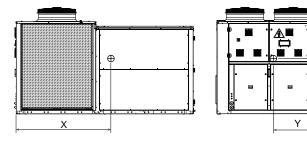
Important: slings must be attached to **all** the marked rigging points (grips). These points are clearly identified by labels.

The slings hooks should be fixed on top of the grips.

It is mandatory to follow the lifting instructions given in the drawings provided on the next page.

5 - HANDLING

The centre of gravity is not necessarily in the middle of the unit and the forces applied to the slings are not always identical. Please consult the weight and the centre of gravity of each model stated in the following table.

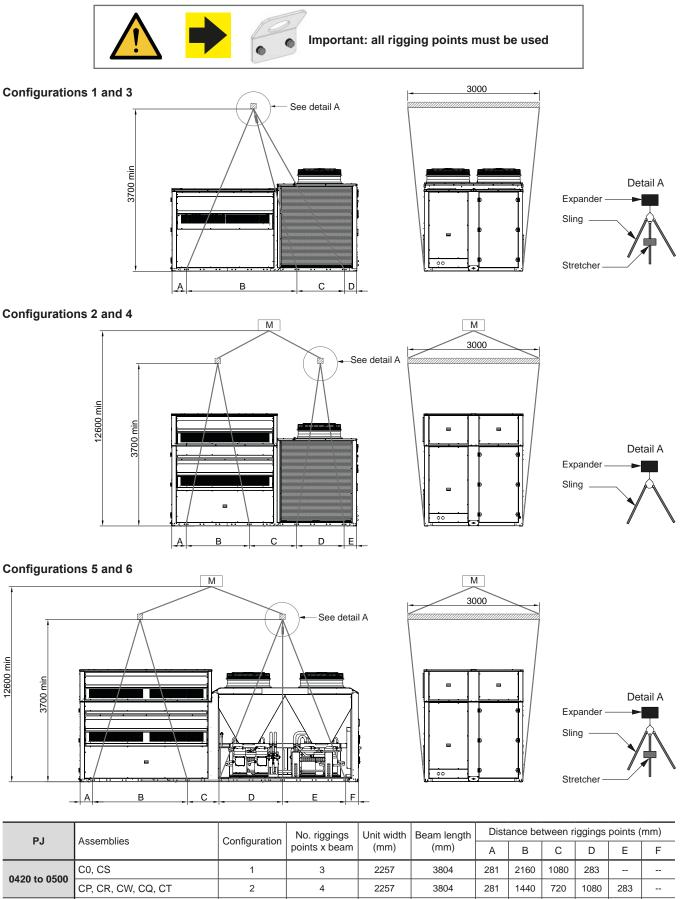

Raise and set down the unit carefully. Take care not to tilt it by more than 15° , as this could adversely affect its operation.

Approved textile slings, suitable for the dimensions and weight of the unit, must be used. A structure with centre of gravity adjustment must also be used to separate the slings from the top of the unit.

Safety when lifting can only be guaranteed if all these instructions are followed. Otherwise, there is a risk of equipment damage or injury to personnel.

After the placing of the unit, it is recommended to remove the grips as they can be a hindrance for maintenance. The grips are fixed to the beams using M10 screws. Put the grips back in case of unit transport (tightening torque of screws 25 Nm).

Centre of gravity, weight and dimensions for transport:



Note: This is the weight of the standard unit and it can be increased depending on the selected options. Check the total weight on the unit's name plate.

PJ		Di	mensio (mm)	ns	Centre of gravity (mm)			Weight (kg)
		Length	Width	Height	Х	Y	Z	
	0420	3820	2257	2293	1566	1046	845	1430
	0450	3820	2257	2293	1566	1046	845	1450
	0500	3820	2257	2293	1566	1046	845	1470
	0560	4224	2257	2340	1840	1042	855	1640
	0620	4224	2257	2340	1840	1042	855	1680
Assembly	0680	4224	2257	2340	1840	1042	855	1690
C0	0720	4224	2257	2340	1840	1042	855	1700
	0760	5300	2257	2421	2356	1121	965	2265
	0840	5300	2257	2421	2338	1135	947	2370
	0960	5300	2257	2421	2304	1165	919	2475
	1050	6350	2257	2494	2718	1158	979	2795
	1200	6350	2257	2494	2718	1158	979	2860
	0420	3820	2257	2293	1595	1074	849	1505
	0450	3820	2257	2293	1595	1074	849	1525
	0500	3820	2257	2293	1595	1074	849	1545
	0560	4224	2257	2340	1866	1066	857	1713
	0620	4224	2257	2340	1866	1066	857	1753
Assembly	0680	4224	2257	2340	1866	1066	857	1763
CS	0720	4224	2257	2340	1866	1066	857	1773
	0760	5300	2257	2421	2387	1140	966	2402
	0840	5300	2257	2421	2367	1155	949	2477
	0960	5300	2257	2421	2333	1183	921	2582
	1050	6350	2257	2494	2740	1168	977	2946
	1200	6350	2257	2494	2740	1168	977	3011

PJ		Di	mensio (mm)	ns	Centre of gravity (mm)			Weight (kg)
10		Length	Width	Height	Х	Y	Z	
	0420	3820	2257	2555	1743	1167	868	1713
	0450	3820	2257	2555	1743	1167	868	1733
	0500	3820	2257	2555	1743	1167	868	1753
	0560	4224	2257	2555	2018	1168	847	1982
	0620	4224	2257	2555	2018	1168	847	2022
Assembly	0680	4224	2257	2555	2018	1168	847	2032
СР	0720	4224	2257	2555	2018	1168	847	2042
	0760	5300	2257	2555	2563	1213	979	2797
	0840	5300	2257	2555	2543	1226	964	2872
	0960	5300	2257	2555	2504	1247	937	2977
	1050	6350	2257	2555	2947	1233	983	3291
	1200	6350	2257	2555	2947	1233	983	3356
	0420	3820	2257	2555	1723	1210	853	1824
	0450	3820	2257	2555	1723	1210	853	1844
	0500	3820	2257	2555	1723	1210	853	1864
	0560	4224	2257	2555	1989	1204	835	2132
	0620	4224	2257	2555	1989	1204	835	2172
Assembly	0680	4224	2257	2555	1989	1204	835	2182
CR	0720	4224	2257	2555	1989	1204	835	2192
	0760	5300	2257	2555	2561	1200	960	2987
	0840	5300	2257	2555	2543	1211 1246	946 920	3062
	0960	5300	2257	2555	2537	-		3167
	1050	6350	2257	2555	2968	1225	969	3491
	1200	6350	2257	2555	2968	1225	969	3556
	0420	3820	2257	2555	1743	1167	868	1677
	0450 0500	3820 3820	2257 2257	2555 2555	1743 1743	1167 1167	868 868	1697 1717
	0560	4224	2257	2555	2018	1168	847	1868
	0500	4224	2257	2555	2018	1168	847	1908
Assembly	0680	4224	2257	2555	2018	1168	847	1918
CW	0720	4224	2257	2555	2018	1168	847	1928
	0760	5300	2257	2555	2563	1213	979	2806
	0840	5300	2257	2555	2543	1226	964	2881
	0960	5300	2257	2555	2504	1247	937	2986
	1050	6350	2257	2555	2947	1233	983	3234
	1200	6350	2257	2555	2947	1233	983	3299
	0420	3825	2268	2555	1775	1055	1071	1809
	0450	3825	2268	2555	1775	1055	1071	1829
	0500	3825	2268	2555	1775	1055	1071	1849
	0560	4229	2268	2555	2024	1053	1038	2072
	0620	4229	2268	2555	2024	1053	1038	2082
Assembly	0680	4229	2268	2555	2024	1053	1038	2092
CQ	0720	4229	2268	2555	2024	1053	1038	2102
	0760	5306	2268	2555	2585	1112	1128	2907
	0840	5306	2268	2555	2565	1127	1110	2982
	0960	5306	2268	2555	2558	1147	1103	3087
	1050	6356	2268	2555	2963	1142	1127	3341
	1200	6356	2268	2555	2963	1142	1127	3406
	0420	3825	2268	2555	1752	1102	1057	1919
	0450	3825	2268	2555	1752	1102	1057	1939
	0500	3825	2268	2555	1752	1102	1057	1959
	0560	4229	2268	2555	1996	1095	1030	2222
	0620	4229	2268	2555	1996	1095	1030	2232
Assembly	0680	4229	2268	2555	1996	1095	1030	2242
СТ	0720	4229	2268	2555	1996	1095	1030	2252
	0760	5306	2268	2555	2583	1105	1114	3057
	0840	5306	2268	2555	2564	1119	1098	3132
	0960	5306	2268	2555	2557	1138	1092	3237
	1050	6356 6356	2268 2268	2555	2983 2983	1138 1138	1110 1110	3541
	1200	0000	2200	2555	2903	1130		3606

Ζ

			-	, ,	, ,	~~~~		U	D	_ L	_ '
0420 to 0500	C0, CS	1	3	2257	3804	281	2160	1080	283		
	CP, CR, CW, CQ, CT	2	4	2257	3804	281	1440	720	1080	283	
0560 to 0720	C0, CS	3	3	2257	4208	325	2520	1080	283		
0560 to 0720	CP, CR, CW, CQ, CT	4	4	2257	4208	325	1440	1080	1080	283	
0760 to 0960	C0, CS, CP, CR, CW, CQ, CT	5	5	2257	5288	325	1440	1080	1080	1080	283
1050 to 1200	C0, CS, CP, CR, CW, CQ, CT	6	5	2257	6338	283	2160	719	1453	1440	283

6 - OPERATION LIMITS

In	let air conditions	Coo	ling	Heating	
	let all conditions	RPJ	IPJ	IPJ	
Indoor	Minimum temperature	9,7°C WB		10ºC	
coil	Maximum temperature	24ºC	WB	27ºC	
Outdoor	Minimum temperature	-10º	с ①	-15°C WB 2 3	
coil	Maximum temperature	52ºC	48ºC	15ºC WB	

- 1 If the condensation pressure control (standard) is disabled, the minimum temperature will be 12°C
- When the outdoor temperature is usually below 5°C WB, the installation of a support element is recommended
- ③ Operation up to -20°C WB at partial load

7 - POSITIONING AND INSTALLATION

7.1 Storage

Important: It is prohibited to store and install the machine in an explosive atmosphere zone (ATEX).

If it is necessary to store the unit for a period of time before its installation, the following recommendations should be followed:

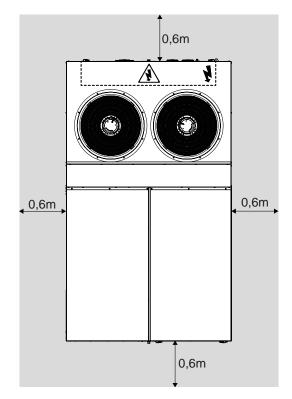
- Do not remove the protective packaging and the transport supports. The unit packed with plastic protective film should not remain exposed to the sun for long, as prolonged exposure of the protective film can deteriorate the unit's paint.
- Store the unit on a flat and horizontal surface.
- It is highly recommended to store the unit in a dry place and protected from the weather.
- Supplied accessories must be stored in a dry and clean place for future unit assembly.
- The unit should always be stored under the following environmental conditions:
 - Minimum ambient temperature: -30°C
 - Maximum ambient temperature: 50°C
 - Maximum relative humidity: 95% (to avoid condensation)

7.2 Choice of location

When choosing the location, whatever may be the selected fashion, the following precautions have to be taken into consideration:

- It is mandatory to comply with norm EN 378-3 on Safety and Environmental Requirements. Part 3: "In situ" installation and protection to people.
- Important: In units with R-454B refrigerant consult the "Rooftop A2L Installation guide" (Nb. 10714), which includes a set of recommendations for choosing the most suitable site. It is the customer's responsibility to carry out the risk analysis of the installation.
- Important: The unit performance is not guaranteed in case of installation at an altitude of more than 1000 meters.
- It is necessary to check that the structure supports the unit's weigh (please consult the weight in section 7.5).
- The area where the unit will be located must be perfectly accessible for cleaning and maintenance operations (please consult the "Recommended service clearance" in section 7.6).
- Since the unit is designed to work outdoors, some specific installation norms must be followed:
 - The unit will be located on the roof of the premises. If it is foreseen that it will work more on heating than on cooling, it is preferable to direct the coil towards the sun. If little work on heating is foreseen, choose North direction.
 - The chosen location must not flood and must be above the average height the snow reaches in that region.

- Do not install the unit in a closed enclosure or in conditions that originate air recirculation.
- Avoid placing obstacles in the air supply or return. No obstacle may impede the air aspiration into the coils.
- Do not fix the outdoor coil side in the predominant wind direction.
- Do not place the fresh air hood in the prevailing wind direction to prevent water from entering.


General information on potentially flammable zone

and ignition sources (R-454B refrigerant)

The full unit, including all options & accessories that are delivered by the manufacturer, has been qualified for the use with A2L refrigerant.

For that purpose, the manufacturer complies with EN 378-2 §6.2.14 and defined potentially flammable zone using EN 60079-10-1 in order to identify where ignition sources must not be present. Then the manufacturer designed the machine in order that, if the unit is used the way it was designed for, there is no internal ignition source in the internal potentially flammable zone.

Thus, the only residual risk is to have an ignition source introduced in the potentially flammable zone by the user. For that purpose, the manufacturer decided to represent the external potentially flammable zone where the user must not introduce ignition source.

7 - POSITIONING AND INSTALLATION

This indication is only here to help our customer to identify the limits of the flammability risk.

But there is no risk of explosion linked to the used of A2L refrigerant due to the machine itself.

Note (the following information is provided by the manufacturer exclusively for informational purposes. The application of the following directives relies exclusively upon the user):

According to directives 2009/104/EC and 1999/92/EC, these zones might be qualified by the user as ATEX Zone based on the user's own risk analysis for which the user remains solely responsible. According to the definition of Annex I of directive 1999/92/EC, this zone might be classified Zone 2 because it might be a place in which an explosive atmosphere consisting of a mixture of air with flammable substances in the form of gas is not likely to occur in normal operation but, if it does occur, will persist for a short period only.

In case an additional equipment is necessary (motorized valve, pump, etc....), it must be:

- installed out of defined potentially flammable zone;
- qualified as a non-ignition source for the fluid used.

Minimum area for indoor air distribution

(R-454B refrigerant)

The unit with refrigerant R-454B (A2L fluid) needs a minimum surface in the room where the air supplied by its indoor circuit will be distributed, according to EN-378-1:

PJ	0420	0450	0500	0560	0620	0680
Refrigerant charge per circuit (kg)	15,5	15,5	15,5	17,0	17,0	17,3
Minimum area (m ²)	115,4	115,4	115,4	126,5	126,5	128,4

PJ	0720	0760	0840	0960	1050	1200
Refrigerant charge per circuit (kg)	17,5	24,5	25,5	25,5	33,3	33,5
Minimum area (m ²)	130,2	182,3	189,8	189,8	247,5	249,3

Important: It is the customer's responsibility to carry out the risk analysis of the installation and, as a result of that analysis, to take the necessary measures according to standard EN-378-1. Consult the recommendations given in the "A2L rooftop installation guide" (Nb. 10714).

These units are equipped as standard with a leak detector that from a certain concentration of gas (parametrizable) activates a PROTECTION MODE until the mitigation of the leak (see the chapter on "Safety elements".

Sound Level

These units are designed to work with a low acoustic level. In any case, the following must be taken into account for the design of the installation: the outdoor environment for acoustic radiation, the type of building for the noise transmitted by air, the solid elements for the transmission of vibrations.

To reduce transmission through solid surfaces to the maximum, it is very advisable to install shock absorbers between the ground or structure and the unit frame. If necessary, a study must be commissioned to an acoustic technician.

Sound power level (LW)

PJ	0420	0450	0500	0560	0620	0680
63 Hz	64,6	65,1	65,6	66,1	66,6	66,9
125 Hz	71,4	71,9	72,4	72,9	73,4	73,7
250 Hz	77,9	78,4	78,9	79,4	79,9	80,2
500 Hz	80,2	80,7	81,2	81,7	82,2	82,5
1000 Hz	80,6	81,1	81,6	82,1	82,6	82,9
2000 Hz	78,1	78,6	79,1	79,6	80,1	80,4
4000 Hz	74,2	74,7	75,2	75,7	76,2	76,5
8000 Hz	69,4	69,9	70,4	70,9	71,4	71,7
Total dB(A)	86,0	86,5	87,0	87,5	88,0	88,3

PJ	0720	0760	0840	0960	1050	1200
63 Hz	67,1	67,1	67,9	69,1	70,6	71,6
125 Hz	73,9	73,9	74,7	75,9	77,4	78,4
250 Hz	80,4	80,4	81,2	82,4	83,9	84,9
500 Hz	82,7	82,7	83,5	84,7	86,2	87,2
1000 Hz	83,1	83,1	83,9	85,1	86,6	87,6
2000 Hz	80,6	80,6	81,4	82,6	84,1	85,1
4000 Hz	76,7	76,7	77,5	78,7	80,2	81,2
8000 Hz	71,9	71,9	72,7	73,9	75,4	76,4
Total dB(A)	88,5	88,5	89,3	90,5	92,0	93,0

Sound pressure level (LP)

Measurement conditions: in a clear field, measured at a distance of 10 metres, directivity 2 and at 1,5 metres from the ground.

PJ	0420	0450	0500	0560	0620	0680
Total dB(A)	53,8	54,3	54,8	55,2	55,7	56,0
PJ	0720	0760	0840	0960	1050	1200
Total dB(A)	56,2	56,1	56,9	58,1	59,4	60,4

Note: The sound pressure level depends on the installation conditions and, as such, it only indicated as a guide. Values obtained according to the ISO 3744 standard.

Preparation of the ground

It is necessary to ensure that the surface where the unit is going to be installed in completely flat. Any defect in the preparation of the unit support surface translates into stresses on the structure, which may result in its deformation. The unit must be perfectly level when installed.

These units can be installed on the floor or on a brick curb or steel profile. Based on the fixing solution defined in the installation project, it will be necessary to plan the placement in the base of threaded rods in the expectation that the unit supports can be fixed later on. To do so, it is recommended that a template be made with the heights corresponding to the fixings.

Foresee appropriate damping devices in these fixings to ensure that noise and vibration transmission is avoided (consult the reactions in the support in section 7.5).

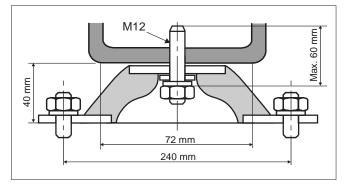
7.3 Antivibrators assembly (silent-blocks)

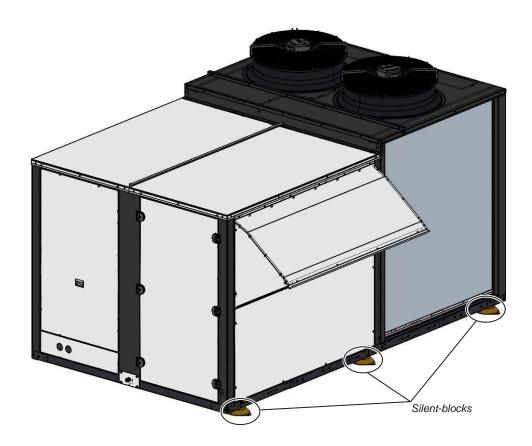
Although the installer is the one who must decide on a case-by-case basis the best way to place the unit in the ultimate location, always in observation of the handling standards that have been described, below is a proposed assembly sequence that may facilitate the operation, keeping in mind that the sequence performed in the installation shall be the one most suitable to the solution chosen for each particular case based on the existence (or lack thereof) of brick curb, type of silent-blocks used, etc.

In the event of assembling directly on silent-blocks to the ground, it is recommended that a template of the unit's footprint with the anchoring points of the silent-blocks be made, as described in the section "Preparation of the ground".

With the help of the crane or the forklift truck, the unit will be raised to a sufficient height that the silent-blocks can be screwed into its base (see Chapter 5).

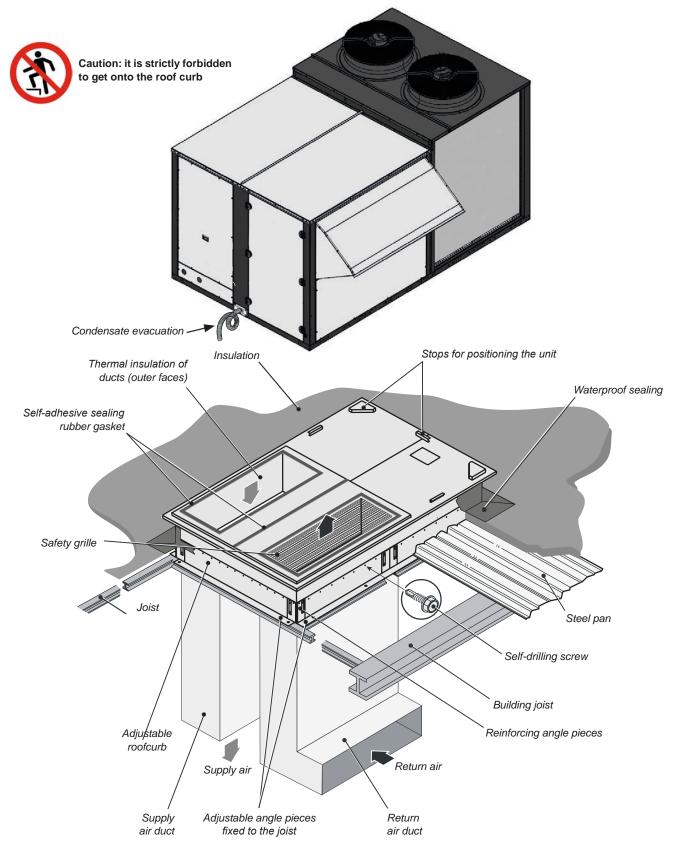

M12 metric threads have been provided for their placement in the supports (consult the fixing for antivibrators in section 7.5). All models will use M12 screws with a maximum length of 60 mm. A hex key 19 or Allen wrench 10 will be used for this operation based on the type of screw used.


The optional silent-blocks that can be supplied for these units must be placed perpendicular to the unit, as shown in the following image.


The screws required for the installation of the silent-blocks are **not supplied** from the factory.

These screws must have an adequate quality to withstand the stresses to which they will be subjected, and they must be adapted to the installation site, either on a brick curb or a steel profile.

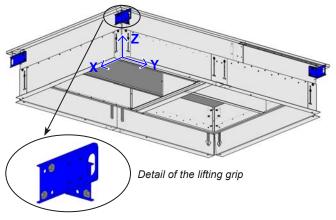
Note: If the silent-block hole has a diameter greater than M12, a washer can be used to adjust the size.



7.4 Pre-assembly roof curb (optional)

These units can rest on standardised pre-assembly roof curbs with adjustable height, built in galvanised steel panelling with polyester paint and thermal insulation.

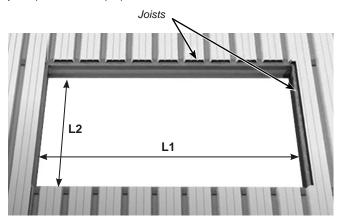
The levelling system uses angle pieces that allow adjustments in the X and Y axes. As a result, the unit will be perfectly levelled on a sloping roof.



These roof curbs can also incorporate a gas burner. For more information consult the section 12.9 "Gas burner". Note:There are a wide range of adaptation roof curbs that are ready for direct replacement on site of units from different manufacturers (upon request).

Handling

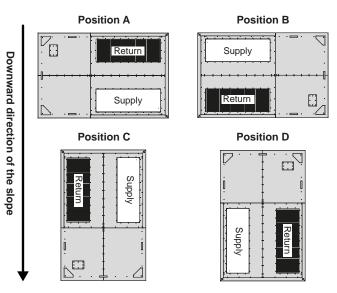
For transport and lifting up to the roof using a crane, a rocker arm as well as approved slings, both suitable for the dimensions and weight of the roof curb, must be used.


	Stan	dard r	oof cu	rb	Roof curb with burner					
Models	Weight (mm)		Burner model	Weight	Centre of gravity (mm)					
	(kg)	Х	X Y Z "		model	del (kg)		Y	Ζ	
0420 to	363	987	1551	402	PCH080	882	1054	1418	609	
0500	0500 303 907	907	1551	402	PCH130	936	1048	1362	607	
0560 to	386	990		404	PCH130	979	1048	1506	604	
0720	300	990	1714	14 404	PCH160	1026	1063	1488	615	
0760 to	470	991	2308	405	PCH160	1194	1052	1972	619	
0960	470	991	2308	405	PCH210	1238	1064	1954	622	
1050 to	550	001	2014	400	PCH160	1323	1045	2369	620	
1200	552 001 2811	409	PCH210	1366	1056	2340	623			

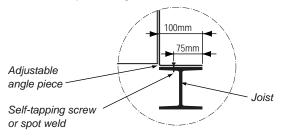
These slings will be hooked on the lifting grips fitted to the roof curb. Each grip is fixed to the roof curb using four M10 screws. Check that the grips are perfectly screwed in before attaching the slings.

Installation on the roof

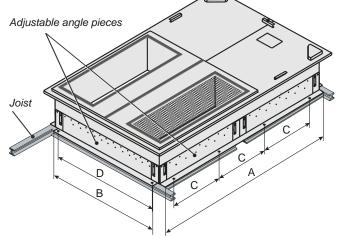
First of all, an opening in the steel pan has to be prepared for the installation of the roof curb. The roof curb will be supported on some joists placed for this purpose in the roof.


The dimensions of this opening should be as follows:

Dimensions (mm)	L1	L2
0420 to 0500	3185	1988
0560 to 0720	3489	1988
0760 to 0960	4821	1988
1050 to 1200	5775	1988


It is mandatory to use all required PPE for work at height.

Place the roof curb on the joists and check that it has been positioned in the right direction.

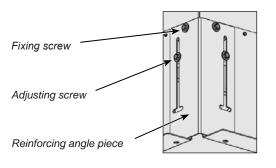


Note: Position A is best suited for gas burner roof curb. In this position it is easier to access the burner register. It is also the most optimal solution in areas where snow can accumulate.

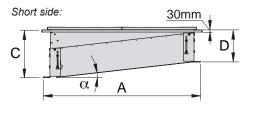
Next, the roof curb must be secured. To do this, the adjustable angle pieces of the roof curb must be fixed to the joists using self-drilling screws or electric spot welding.

The following image shows the position of the drills in the angle pieces (Ø 18mm):

Dimensions (mm)	A	В	С	D
0420 to 0500	3163	1912	1005	1818
0560 to 0720	3467	1912	1106	1818
0760 to 0960	4798	1912	1550	1818
1050 to 1200	5753	1912	1868	1818


The next step will be to check the leveling of the roof curb. The procedure is different for the standard roof curb and for the roof curb with burner:

• Standard roof curb:


The roof curb is shipped from the factory with its maximum height.

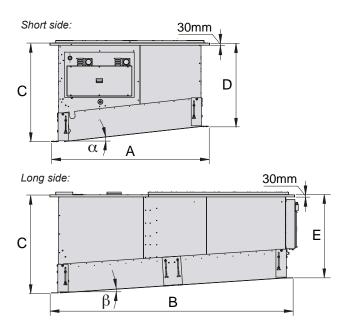
First, the lifting grips must be removed. Each grip is fixed to the roof curb using four M10 screws.

Then the fixing screws of the reinforcing angle pieces have to be removed and all the adjusting screws have to be loosened (M10). At that time the roof curb can be aligned to correct the angle of the roof. It is recommended to use a leveler.

The following table lists both the maximum angle and different adjustment angles:

Long side: C β B B

Dimensions				Standard r	roof curl	b	
(mm)	A	В	С	α	D = f(α)	β	E = f(β)
				6,5º (11,4%)	445	3,8º (6,7%)	445
0420 to 0500	2188	3385	655	4,8º (8,4%)	500	3,4º (5,9%)	500
0420 10 0300	2100	3365	000	4,0º (7,0%)	526	3,0º (5,2%)	518
				3,0º (5,2%)	558	2,0º (3,5%)	564
0560 to 0720				6,5º (11,4%)	445	3,5º (6,1%)	445
	0400	2690	055	4,8º (8,4%)	500	3,0º (5,2%)	475
	2188	3689	655	4,0° (7,0%)	526	2,6º (4,5%)	500
				3,0º (5,2%)	558	2,0º (3,5%)	535
			655	6,5º (11,4%)	445	2,5° (4,4%)	445
0760 to 0960	2188	5021		4,8º (8,4%)	500	2,0º (3,5%)	487
0760 10 0960	2100	5021		4,0º (7,0%)	526	1,9º (3,2%)	500
				3,0º (5,2%)	558	1,5º (2,6%)	529
				6,5º (11,4%)	445	2,1º (3,9%)	445
1050 to 1200	0100	5975	CEE	4,8º (8,4%)	500	2,0º (3,5%)	455
1050 to 1200	2188	5915	5 655	4,0° (7,0%)	526	1,5º (2,6%)	500
				3,0º (5,2%)	558	1,0º (1,7%)	555

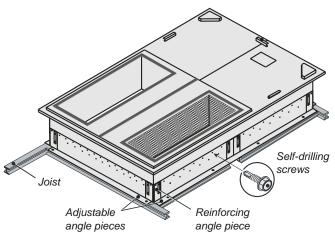

When the roof curb is perfectly level, the adjusting screws must be tightened again and the fixing screws must be placed.

• Roof curb with burner:

The roof curb is shipped from the factory with its minimum height. In this case, due to the weight of the gas burner, lifting grips and slings can be used to carry out leveling.

The fixing screws of the reinforcing angle pieces have to be removed and all the adjusting screws have to be loosened (M10). At that time the roof curb can be aligned to correct the angle of the roof. It is recommended to use a leveler.

The following table lists both the maximum adjustment angles:



Dimensions		Roof curb with burner									
(mm)	А	В	С	α	D = f(α)	β	E = f(β)				
0420 to 0500	2188	3385	1374	6,5º (11,4%)	1164	3,8º (6,7%)	1164				
0560 to 0720	2188	3689	1374	6,5º (11,4%)	1164	3,5º (6,1%)	1164				
0760 to 0960	2188	5021	1374	6,5º (11,4%)	1164	2,5º (4,4%)	1164				
1050 to 1200	2188	5975	1374	6,5º (11,4%)	1164	2,1º (3,9%)	1164				

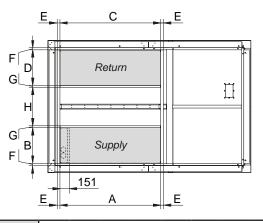
When the roof curb is perfectly level, the adjusting screws must be tightened again and the fixing screws must be placed.

At this time the lifting grips must be removed, because they prevent the correct waterproof sealing.

Then, the adjustable angle pieces must be fixed with 4.8 hexagonal self-drilling screws (supplied from the factory) or by means of electric spot welding.

Air ducts connections

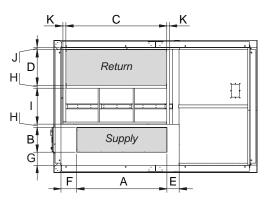
For units with vertical airflow, the ducts must be connected to the profiles from underneath the roof curb.


It is mandatory to use all required PPE for work at height.

Note: All the roof curb incorporate a safety grille in the air return.

In order to carry out the air ducts follow the recommendations in the section 9.4 "Air ducts connections".

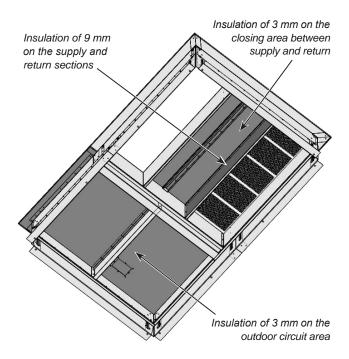
The thickness of the sheet metal profiles to connect the discharge and/or return ducts to the roof curb are shown in the following tables:


Standard roof curb:

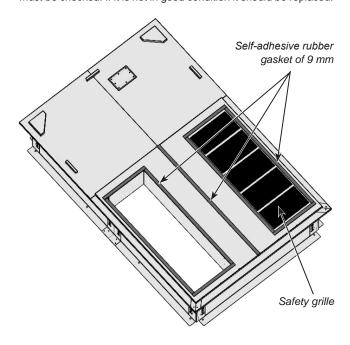
Dimensions			St	andard	roof cu	ırb		
(mm)	А	В	С	D	Е	F	G	Н
0420 to 0500	1700	600	1700	600	45	37	32	649
0560 to 0720	2000	600	2000	600	45	37	32	649
0760 to 0960	2200	600	2200	600	45	37	32	649
1050 to 1200	2600	600	2600	600	45	37	32	649

Note: If the unit incorporates a hot water coil (optional), the length of the supply duct is reduced by 151 mm.

Roof curb with burner:

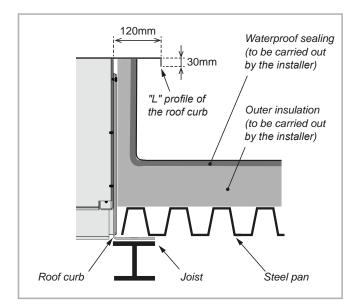


Dime	nsions				Roof	curb	with	burne	er			
(m	nm)	А	В	С	D	E	F	G	Н	I	J	К
0420 to	PCH080	1521	418	1700	600	206	264	222	50	606	37	45
0500	PCH130	1521	943	1700	600	206	264	92	50	215	37	45
0560	to 0720	1824	943	2000	600	206	266	92	50	215	37	45
0760	to 0960	2018	943	2200	600	211	266	92	50	215	37	45
1050	to 1200	2418	943	2600	600	211	266	92	50	215	37	45


Insulation and waterproof sealing

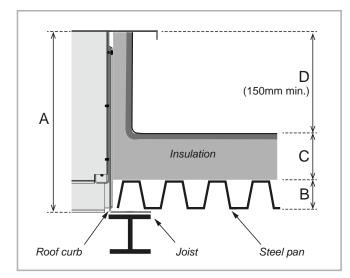
Following insulation is standard for the roof curb:

- Thermal insulation of 9 mm on the outer faces of supply and return sections.
- Insulation of 3 mm on the closing area between supply and return sections.
- Insulation of 3 mm on the panels that support the outdoor circuit of the rooftop unit, to prevent condensation build-up.


 Self-adhesive rubber gasket of 9 mm around the perimeter of the supply and return ducts, as well as on the central crossbar.
 Important: Before installing the rooftop unit, the state of this gasket must be checked. If it is not in good condition it should be replaced.

When the installation of the roof curb is finished, the steel pan must be insulated again. It is also necessary to completely seal the roof curb to ensure tightness and prevent water from entering the building. Important: These works are the sole responsibility of the installer.

Caution: it is strictly forbidden to get onto the roof curb.

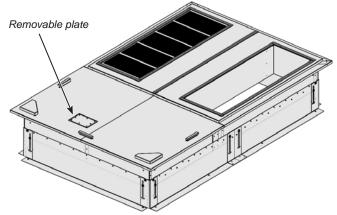

The upper part of the sealing must always end under the "L" profile that completely surrounds the roof curb. This sealing must be continuous and all joints must be checked.

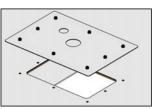
Important: Check that the roof curb height is sufficient to respect the minimum sealing height required according to local regulations (example: 150 mm minimum sealing height in France according to DTU).

To do this, check that the dimension "A" of the roof curb exceeds the thickness of the steel pan "B" plus the insulation "C" plus the minimum sealing distance required "D".

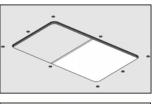
 $A(mm) \ge B + C + D$ (150 mm min.)

The following table shows the range of values for dimension "A" that depends on the inclination of the roof curb:


Dimensions	Standard	roof curb	Roof curb	with burner
(mm)	Maximum	Minimum	Maximum	Minimum
Dimension A	655	445	1374	1164

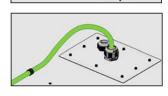


It is mandatory that the installer performs a waterproofness test on the roof curb when finished with the sealing, both to the side sealing and to the surface of the roof curb itself, in anticipation that during transport and lifting its tightness could have deteriorated.


Passage of the electrical cables through the roof curb

The power and control cables must pass through the roof curb for subsequent connection in the electrical cabinet of the rooftop unit. For this purpose, the roof curb incorporates a removable plate.

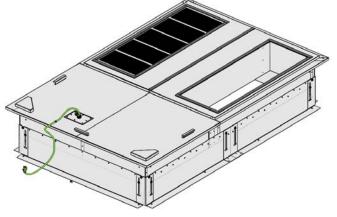
The plate is fixed to the roof curb with M4 Allen screws. Drill the plate, one hole by cable, with the appropriate diameter for the glands.



Holes should be made in the central part of the plate to match

the gap in the roof curb.

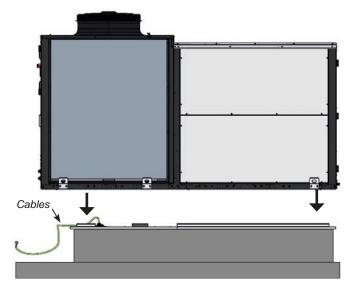
Dimensions: 215 mm (length) x 130 mm (width).

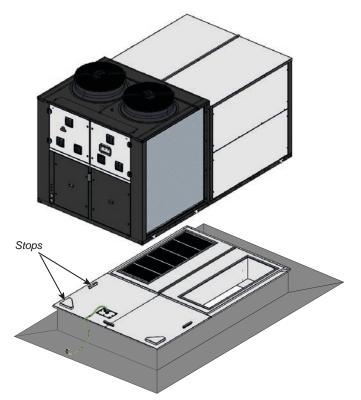

Then pass the cables through the glands.

Finally reposition the plate.

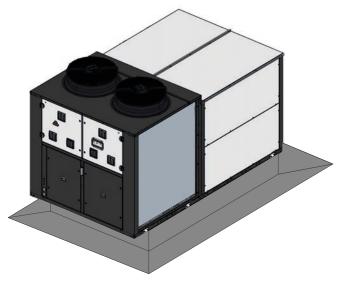
This plate incorporates a sealant on its inner face to guarantee the tightness of the joint.

Be careful to leave the ends of the cables outside the roof curb before placing the unit on top.

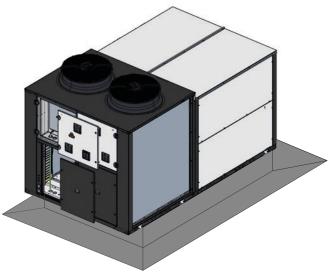



Important: The installer must ensure the tightness of the roof curb after the placement of the glands.

Positioning the unit above the roof curb


Once the previous work has been carried out, the rooftop unit can be positioned above the roof curb with the help of a crane. For the handling of the unit, the recommendations given in chapter 5 should be followed. Suction cup handles can be used to guide this operation.

The base of the roof curb is equipped with stops in the area of the outdoor circuit that facilitate the positioning of the unit.



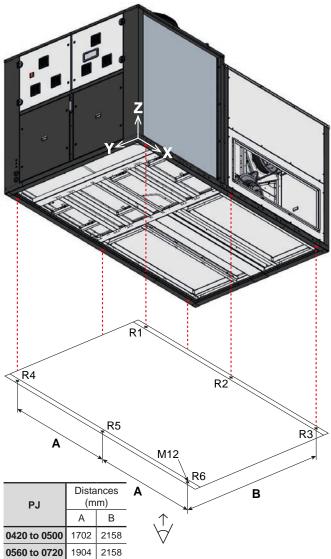
No connecting element is necessary between the unit and the roof curb, because they are perfectly coupled.

Unit wiring

On models 0420 to 0720 (with "U" coil), first the power cables must pass through sheet metal precuts located at the base of the unit. Then they must pass through the wall bushings located at the base of the electrical cabinet.

On models 0760 to 1200 (with "V" coil), the power cables must pass through the wall bushings located at the base of the electrical cabinet. Note: Refer to Chapter 8 for more detailed information on the electrical wiring of the unit.

7.5 Centres of gravity, weight and reactions in the supports


				C0 a	assem	nbly				
PJ	Centre	of gravi	ty (mm)	Weight	Re	action	s in th	e supp	oorts (kg)
	Х	Y	Z	(kg)	R1	R2	R3	R4	R5	R6
0420	1566	1046	845	1430	274	363	127	242	326	100
0450	1566	1046	845	1450	277	368	129	246	331	102
0500	1566	1046	845	1470	280	372	130	248	334	104
0560	1840	1042	855	1640	278	430	167	245	383	139
0620	1840	1042	855	1680	284	440	172	252	392	143
0680	1840	1042	855	1690	285	441	172	252	394	143
0720	1840	1042	855	1700	287	444	174	254	396	145

				CS	assem	nbly				
PJ	Centre	of gravi	ty (mm)	Weight	Re	action	s in th	e sup	ports (kg)
	Х	Y	Z	(kg)	R1	R2	R3	R4	R5	R6
0420	1595	1074	849	1505	276	369	138	253	349	121
0450	1595	1074	849	1525	280	374	140	257	354	123
0500	1595	1074	849	1545	282	378	142	259	357	125
0560	1866	1066	857	1713	279	444	170	251	406	160
0620	1866	1066	857	1753	286	454	175	258	416	165
0680	1866	1066	857	1763	288	456	176	259	418	166
0720	1866	1066	857	1773	290	459	178	261	420	168

				CP	assem	nbly				
PJ	Centre	of gravi	ty (mm)	Weight	Re	action	s in th	e sup	ports (kg)
	Х	Y	Z	(kg)	R1	R2	R3	R4	R5	R6
0420	1743	1167	868	1713	270	391	186	282	430	207
0450	1743	1167	868	1733	264	386	179	276	426	201
0500	1743	1167	868	1753	267	390	182	279	431	203
0560	2018	1168	847	1982	270	458	223	281	507	244
0620	2018	1168	847	2022	276	469	227	287	517	250
0680	2018	1168	847	2032	277	470	229	289	519	251
0720	2018	1168	847	2042	278	471	230	290	520	252

				CR	assem	nbly				
PJ	Centre	of gravi	ty (mm)	Weight	Re	action	s in th	e supp	oorts (kg)
	Х	Y	Z	(kg)	R1	R2	R3	R4	R5	R6
0420	1723	1210	853	1824	283	368	185	319	441	225
0450	1723	1210	853	1844	287	372	187	323	446	228
0500	1723	1210	853	1864	290	376	190	326	451	231
0560	1989	1204	835	2132	299	456	236	331	536	274
0620	1989	1204	835	2172	304	466	239	337	549	279
0680	1989	1204	835	2182	306	468	241	339	551	280
0720	1989	1204	835	2192	306	469	241	340	552	281

				CQ	assem	nbly				
PJ	Centre	of gravi	ty (mm)	Weight	Re	action	s in th	e supp	oorts (kg)
	Х	Y	Z	(kg)	R1	R2	R3	R4	R5	R6
0420	1775	1055	1071	1809	290	442	222	259	399	196
0450	1775	1055	1071	1829	293	447	225	262	404	198
0500	1775	1055	1071	1849	295	450	226	263	406	199
0560	2024	1053	1038	2072	305	523	264	272	475	234
0620	2024	1053	1038	2082	306	531	263	271	482	232
0680	2024	1053	1038	2092	308	533	264	273	484	234
0720	2024	1053	1038	2102	308	535	265	273	485	234

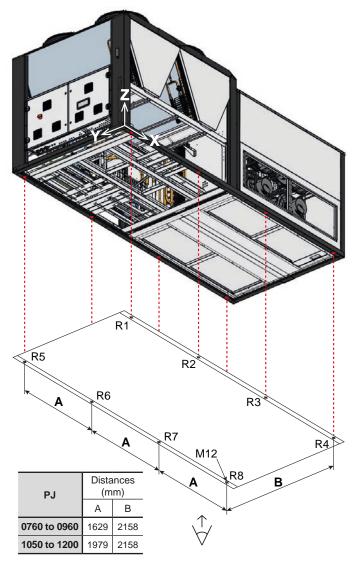
				CT a	assem	bly				
PJ	Centre	of gravi	ty (mm)	Weight	Re	action	s in th	e sup	oorts (kg)
	Х	Y	Z	(kg)	R1	R2	R3	R4	R5	R6
0420	1752	1102	1057	1919	316	427	229	302	419	223
0450	1752	1102	1057	1939	320	432	232	306	424	225
0500	1752	1102	1057	1959	323	436	235	309	428	228
0560	1996	1095	1030	2222	339	523	277	319	510	265
0620	1996	1095	1030	2232	338	528	274	318	514	262
0680	1996	1095	1030	2242	339	530	275	320	517	264
0720	1996	1095	1030	2252	340	532	276	320	518	264

			Wasse	mbly (smalle	r dian	neter	whee			
РJ	Centre			Weight (kg)	1	ctions		<i>'</i>	ports	s (kg)
	Х	Y	Z	Unit + Module	R1	R2	R3	R4	R5	R6
0420	1979	1539	983	1677 + 560	179	322	213	374	713	436
0450	1979	1539	983	1697 + 560	176	320	211	373	714	435
0500	1979	1539	983	1717 + 560	178	323	213	376	720	439
0560	2227	1503	937	1868 + 650	194	399	259	380	811	473
0620	2227	1503	937	1908 + 650	191	406	262	387	830	482
0680	2227	1503	937	1918 + 650	192	408	264	389	832	484
0720	2227	1503	937	1928 + 650	195	412	267	393	837	488

Note: This is the weight of the standard unit and it can be increased depending on the selected options. Check the total weight on the unit's name plate.

7 - POSITIONING AND INSTALLATION

7.5 Centres of gravity, weight and reactions in the supports:


					CO	asse	mbly					
PJ		entre vity (n		Weight (kg)		R	eactic		the s g)	uppo	rts	
	Х	Y	Ζ	R1 R2 R3 R4 R5 R6 R7 R							R8	
0760	2356	1121	965	2265	258	411	265	191	268	436	253	182
0840	2338	1135	947	2370	271	425	273	195	291	455	272	190
0960	2304	1165	919	2475	285	437	273	188	317	490	291	198
1050	2718	1158	979	2795	307	540	297	204	350	582	306	207
1200	2718	1158	979	2860	315	554	304	209	358	597	313	212

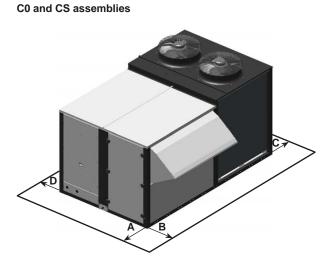
					CS	asse	mbly					
PJ		entre vity (n		Weight (kg)		Re	eactic		the s g)	uppo	rts	
	Х	Y	Ζ	R1 R2 R3 R4 R5 R6 R7						R7	R8	
0760	2387	1140	966	2402	263	426	267	189	295	480	285	199
0840	2367	1155	949	2477	275	432	282	208	302	475	293	213
0960	2333	1183	921	2582	288	443	282	201	327	509	311	220
1050	2740	1168	977	2946	319	556	313	222	366	606	329	231
1200	2740	1168	977	3011	326	569	320	227	375	621	337	236

					CF	asse	mbly					
PJ		entre vity (n		Weight (kg)		Re	eactic		the s g)	uppo	rts	
	Х	Y	Ζ		R1 R2 R3 R4 R5 R6 R7 R							R8
0760	2563	1213	979	2797	256	446	314	265	302	545	365	308
0840	2543	1226	964	2872	263	454	317	264	321	560	381	311
0960	2504	1247	937	2977	274	468	317	257	339	616	394	314
1050	2947	1233	983	3291	293 571 343 271 379 692 417 324							324
1200	2947	1233	983	3356	299 583 350 277 387 707 426 33							331

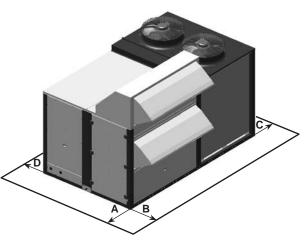
					CR	asse	embly					
PJ		entre vity (n		Weight (kg)		R	eactic		the s g)	uppo	rts	
	Х	Y	Ζ		R1 R2 R3 R4 R5 R6 R7 R							R8
0760	2561	1200	960	2987	277 482 340 287 320 576 385 32							324
0840	2543	1211	946	3062	284	490	343	286	339	591	401	328
0960	2537	1246	920	3167	284	493	340	283	350	650	421	343
1050	2968	1225	969	3491	309 607 370 296 395 727 442 347							347
1200	2968	1225	969	3556	315 618 377 302 402 741 450 354							354

					CC) asse	emblv					
PJ	-	entre vity (r		Weight (kg)			,	ons in	the s g)	uppo	rts	
	Х	Y	Ζ		R1 R2 R3 R4 R5 R6 R7 R							R8
0760	2585	1112	1128	2907	282	496	363	310	288	518	346	297
0840	2565	1127	1110	2982	291	505	367	311	308	534	363	302
0960	2558	1147	1103	3087	296	518	373	314	317	583	377	312
1050	2963	1142	1127	3341	319 621 388 309 357 656 388 304							304
1200	2963	1142	1127	3406	325	634	395	315	364	669	396	310

					СТ	asse	mbly					
PJ	-	entre vity (r		Weight (kg)		Re	eactic		the s g)	uppo	rts	
	Х	Y	Ζ		R1 R2 R3 R4 R5 R6 R7 R							R8
0760	2583	1105	1114	3057	300	528	386	329	302	546	362	309
0840	2564	1119	1098	3132	307 536 388 327 321 561 378 31							313
0960	2557	1138	1092	3237	311	549	394	331	329	610	392	323
1050	2983	1138	1110	3541	335	658	415	334	372	689	412	326
1200	2983	1138	1110	3606	341	670	423	340	380	703	420	332

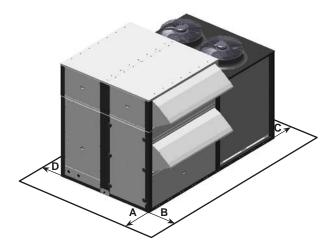

			CV	V assembly ((smaller diameter wheel)								
PJ	gravity (mm)		Weight (kg) Unit +	Reactions in the supports (kg)									
	Х	Y	Z	Module	R1	R2	R3	R4	R5	R6	R7	R8	
0760	2793	1473	1001	2806 + 685	201	406	311	317	375	755	585	540	
0840	2772	1477	987	2881 + 685	209	414	315	318	395	771	602	545	
0960	2756	1493	1493	2986 + 685	207	418	313	316	404	834	618	558	
1050	3195	1439	1010	3234 + 705	232	525	346	324	450	894	627	539	
1200	3195	1439	1010	3299 + 705	236	534	352	329	458	909	638	549	

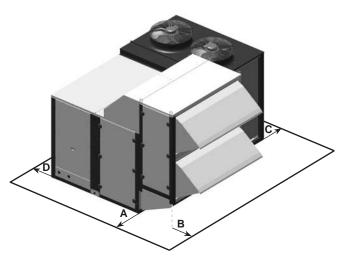
Note: This is the weight of the standard unit and it can be increased depending on the selected options. Check the total weight on the unit's name plate.


7.6 Recommended service clearance

Important: This is the **minimum** space required for maintenance operations and access inside the unit. Depending on the assembly selected for the unit and the characteristics of the installation site, a larger space around it may be required to ensure proper air circulation and therefore the correct operation of the unit.

PJ - 0420 to 0720


CP and CR assemblies


PJ	Overa	all dimer (mm)	nsions	Service clearance (mm)				
	Length	Width	Height	А	В	С	D	
0420 to 0500	3.820	2.257	2.293	2.200	1.000	1.200	1.000	
0560 to 0720	4.224	2.257	2.340	2.400	1.000	1.200	1.000	

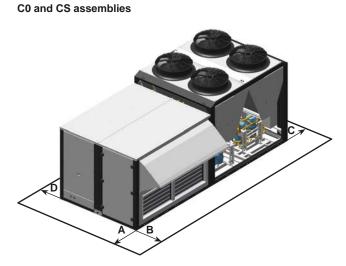
PJ	Overa	all dimer (mm)	nsions	Service clearance (mm)				
	Length	Width	Height	А	В	С	D	
0420 to 0500	3.820	2.257	2.555	2.200	1.000	1.200	1.000	
0560 to 0720	4.224	2.257	2.555	2.400	1.000	1.200	1.000	

CQ and CT assemblies

Overall dimensions Service clearance (mm) (mm) PJ Width С D Length Height A В 0420 to 0500 3.825 2.268 2.555 2.200 1.000 1.200 1.000 2.268 1.000 0560 to 0720 4.229 2.555 2.400 1.200 1.000 CW assembly

PJ	Overa	all dimer (mm)	nsions	Service clearance (mm)				
	Length Width Height			А	В	С	D	
0420 to 0500	3.820	3.112	2.255	2.200	1.000	1.200	1.000	
0560 to 0720	4.224	3.112	2.555	2.400	1.000	1.200	1.000	

Unit not designed to have overhead obstruction.


7.6 Recommended service clearance

Important: This is the **minimum** space required for maintenance operations and access inside the unit. Depending on the assembly selected for the unit and the characteristics of the installation site, a larger space around it may be required to ensure proper air circulation and therefore the correct operation of the unit.

CP and CR assemblies

CW assembly


PJ - 0760 to 1200

PJ	Overa	all dimer (mm)	nsions	Service clearance (mm)				
	Length	ength Width Height			В	С	D	
0760 to 0960	5.300	2.257	2.421	2.600	2.500	1.200	1.000	
1050 to 1200	6.350	2.257	2.494	3.000	2.500	1.200	1.000	

PJ	Overa	all dimer (mm)	isions	Service clearance (mm)					
	Length	n Width Height		А	В	С	D		
0760 to 0960	5.300	2.257	2.555	2.600	2.500	1.200	1.000		
1050 to 1200	6.350	2.257	2.555	3.000	2.500	1.200	1.000		

CQ and CT assemblies

PJ	Overa	all dimer (mm)	isions	Service clearance (mm)				
	Length	Width	Height	А	В	С	D	
0760 to 0960	5.306	2.268	2.555	2.600	2.500	1.200	1.000	
1050 to 1200	6.356	2.268	2.555	3.000	2.500	1.200	1.000	

PJ	Overa	all dimer (mm)	isions	Service clearance (mm)				
	Length Width Height			А	В	С	D	
0760 to 0960	5.300	3.112	2.555	2.600	1.700	1.200	1.000	
1050 to 1200	6.350	3.112	2.555	3.000	2.500	1.200	1.000	

Unit not designed to have overhead obstruction.

8.1 Installation norms

Important: All connections in the site are the responsibility of the installer. These connections are always made as per the current regulation. Always refer to the wiring diagram provided with the unit.

The installer must provide electrical circuit protections according to the effective legislation.

To prevent electrical shocks, make all electrical connections before energizing the unit. Check that the automatic switch is closed. Omitting this can cause personal damage. Make the ground connection before any other electrical connection.

8.2 Power supply

Verify that power supply agrees with the unit name plate and that the voltage remains constant.

Warning: It is recommended the use of a residual current device (RCD) type B or B+, with a trip threshold of 300 mA and super resistant characteristic K.

Warning: Operation of the unit with an incorrect supply voltage or excessive phase imbalance constitutes misuse which will invalidate the manufacturer's warranty. If the phase imbalance exceeds 2% for voltage, or 10% for current, contact your local electricity supplier at once and ensure that the unit is not switched on until corrective measures have been taken.

Voltage phase imbalance (%)

% imbalance =

100 x max. deviation from average voltage

average voltage

Example:

On a 400 V - 3 ph - 50 Hz power supply, the individual phase voltages were measured with the following values:

AB = 406 V; BC = 399 V; AC = 394 V

Average voltage = (406+399+394)/3=1199/3 = 399.7 i.e. 400 V

Calculate the maximum deviation from the 400 V average:

(AB) = 406 - 400 = 6 -> % = 100 x 6 / 400=1.5 (BC) = 400 - 399 = 1 -> % = 100 x 1 / 400=0.25 (CA) = 400 - 394 = 6 -> % = 100 x 6 / 400=1.5

Important: It is the responsibility of the installer to protect the unit from overvoltage coming from the mains or voltage spikes caused by lightning. Depending on the geographic location and the type of mains network (buried or overhead), a lightning rod needs to be installed. Check the local electrical codes and regulations. Failure to comply with the requirements of standards in force in the country of installation will void the warranty.

8.3 Wire sizing

Wire sizing is the responsibility of the installer to suit the characteristics of the installation site and comply with applicable regulations.

To perform the electric installation of the unit (cable glands, wire sizing and their calculations, protections, etc.), refer to the information provided in:

- The technical brochure of this series.
- The name plate data.
- The wiring diagram included with the unit.
- Norms in effect that regulate the installation of air conditioning units and electrical receivers in the country of installation.

Wiring must be selected based on:

• The maximum absorbed current, taking into account all the options it features (refer to the technical brochure and the name plate). Important: Short-circuit current: 10 kA according to IEC/EN 60947-2.

- The distance between the unit and its power source.
- The protection to be placed at the power source.
- Neutral operating conditions.
- The electrical connections (refer to the wiring diagram provided with the unit).
- The temperature the wiring is exposed to;
- The fitting method.

After wire sizing has been completed, the installer must verify the appropriate means of connection and define any modifications necessary on site.

Maximun wire sizing depending on the main door switch:

OT125	70 mm ²	wire size for flange clamp	Ø	
OT160EV_	M8x25	metric thread diameter x length mm	S	
OT200E_	M8x25			
OT250_	M8x25			
OT315_	M10x30			
OT400_	M10x30			
OT630_	M12x40			

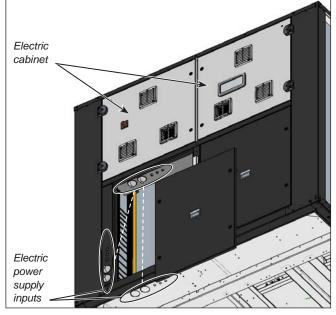
Note: Copper cable is recommended. If the unit needs to be adapted for an aluminium installation, please consult.

Note: If an adapter to increase this wire sizing is needed, please consult.

Power cable access routing

The power cables can be routed into the electrical cabinet via the wall bushings located:

- In models 0420 to 0720: in a left panel below the electrical cabinet or in the machine base.
- In models 0760 to 1200: below the electrical cabinet (left door).


It is important to check that the power cable bend radius is compatible with the connection space available inside the electrical cabinet.

8.4 Electrical cabinet

/loto

All units include a fully wired electrical cabinet, with forced ventilation. The access doors are insulated to prevent condensation.

Models 0420 to 0720:

8 - ELECTRICAL CONNECTION

Models 0760 to 1200:

The fan for cooling the electrical cabinet, the VecticGD terminal and the ground connector, all located on the doors, must be disconnected before removing the doors.

These doors have hinges + quarter-turn latches.

These latches of stainless steel have triangular insert 8 mm (supplied wrench). The closing is done by rotating 90° (anti-clockwise): it brings the latch to the locked position.

Dual locks can function as hinges or can be used to remove the door. Check that the locks are not blocked. Open them with a 4 mm Allen wrench (in an anticlockwise direction).



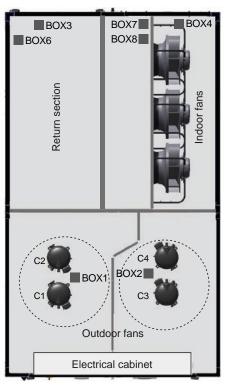
Electrical components are identified and all wires are numbered. It permits easy tracing and diagnostics.

Power cables are identified with the colors: black (L1) - Brown (L2) - grey (L3) - yellow/green (Ground).

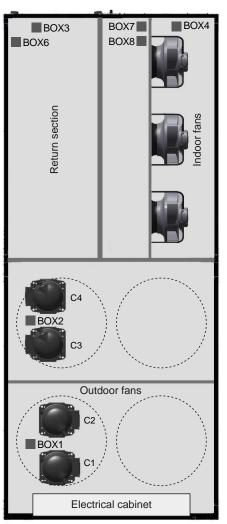
Important:

The grounding lug (PE), located on the panel plate, is used to earth the frame of the unit.

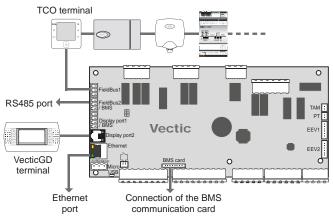
The main components of the unit are connected in intermediate boxes located next to these components.


BOX1: Motor-compressor circuit 1

PE


- BOX2: Motor-compressor circuit 2
- BOX3: Mixing box
- BOX4: Indoor unit
- BOX5: Rotary heat exchanger (optional). In this case the box is located in the wheel module.
- BOX6: Return box (optional)
- BOX7: Electrical heaters (optional)
- BOX8: Hot water coil or heat recovery coil or gas burner (optionals)

The following images show the location of these boxes:



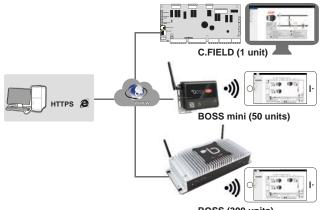
Models 0760 to 1200

8.5 Vectic electronic control

Vectic electronic control is basically comprised of a control board, sensors, a VecticGD graphic terminal and a TCO user terminal (optional).

The μ PC3 control board comes equipped with a web tool, C.FIELD, which can be accessed through the board's IP address. This tool enables users to monitor the status of the unit at all times. By navigating through various menus, users can view the variables that are controlled by the Vectic control.

This board also integrates two BMS communication ports:


- One RS485 port (Fieldbus2/BMS) for communication with:
 - Modbus RTU.
 - BACnet MSTP (additional license required).

This port allows the unit to be connected to our remote monitoring solution: **ABOUND HVAC Performance**.

- One Ethernet IP port (Ethernet) for communication with:
 - Modbus TCP/IP.
 - BACnet IP (additional license required).

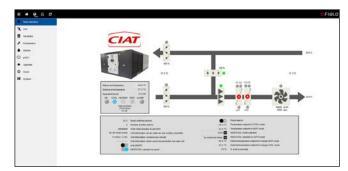
The Ethernet port allows the unit to be connected on a **shared network (SHRD)** of up to 15 units, with one unit configured as "Lead" and the rest as "Lag". This network allows the exchange of data and information among the various units. Depending on the installation conditions, it can also share the readings of certain probes installed in the unit that is configured as the "Lead" unit, as well as temperature setpoints and operating mode. Furthermore, it is possible to configure one of the units as a "Backup" to be activated in case of malfunction of the other unit.

This port also enables integration of the unit with our local supervision solutions: **BOSS mini** (50 units) and **BOSS** (300 units).

BOSS (300 units)

A communication card *(BMS card)* (optional) can also be connected to the μ PC3 control board for the following protocols: BACnet MSTP, BACnet Ethernet and Modbus RTU.

Note: Refer to the Vectic control brochure to obtain more detailed information on its operation.


C.FIELD web tool

The μ PC3 control board includes a web tool for managing the operation of the unit. C.FIELD facilitates unit setup, commissioning, maintenance and software version updates.

To access C.FIELD it is only necessary to know the IP address of the board: http://IP_address/commissioning/index.html

Note: if the board is not connected to the Internet, C.FIELD can be accessed via the microUSB port.

There are four levels of access, sorted from highest to lowest: Administrator, Service, User, Guest. The Web Interface section is displayed at all levels, also for guest users.

The C.FIELD menu includes the following sections:

	Web interface	Web interface: synoptic of the air circuit visualization of the main variables and	
٠٦,	Unit	some parameters. Access to the cooling circuit overview.	
	Variables	Unit: display of the value of the inputs/ outputs grouped by type.	
×	Parameters	Variables: unit supervision variables divided into groups.	
	Alarms	Parameters: all control parameters divided into groups.	
Q	pGD1	Alarms: recording of alarms.	
≁	Upgrade	pGD1: emulation of the VecticGD terminal with all its functionalities.	
Ø	Clock	Update: management of software updates, operating system and C.FIELD.	
	System	Clock: date, time and time zone.	
		System: µPC3 board information.	

BOSSmini and BOSS supervision solutions

The following supervision solutions are available depending on the dimensions of the installation:

BOSS mini

It is the solution for the management and supervision of small or mediumsized air conditioning installations. Up to 10 units with 50 variables per unit or 50 units with 10 variables maximum per unit.

The µPC3 control board allows for communication through its built-in Ethernet port.

Its main advantages are:

- Integrated WIFI Hotspot for direct access without any extra infrastructure.
- Smartphone compatibility.

8 - ELECTRICAL CONNECTION

- Secure supervisor control from remote through a simple browser.
- Introduces Bacnet protocol (MSTP and TCP/IP) along with Modbus protocols (MSTP and TCP/IP)
- Integration of BMS with IP Lag mode (sharing values of interest for the general management of the building).

To access BOSSmini it is only necessary to know its identification number (xxxx): http://mboss-xxxx/boss/

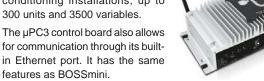
0 °a a

BOSSmini offers four different access levels, allowing for both commissioning and daily access for system maintenance. It also includes advanced monitoring functions and allows for the creation of areas and groups to simplify installation management.

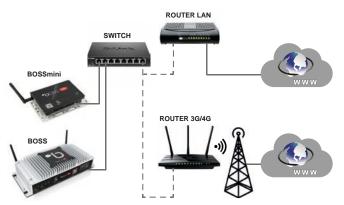
This solution also allows the integration of energy meters for monitoring the electrical consumption of the installation.

BOSSmini is shipped from the factory with pre-configured settings and customizations that are based on the specific needs and specifications of each customer.

Available in two versions:


- CPU device.
- CPU device, monitor, mouse and keyboard.

BOSS


It is the solution for the management and supervision of large air conditioning installations, up to 300 units and 3500 variables.

features as BOSSmini.

To access BOSS: http://boss-xxxx/boss/

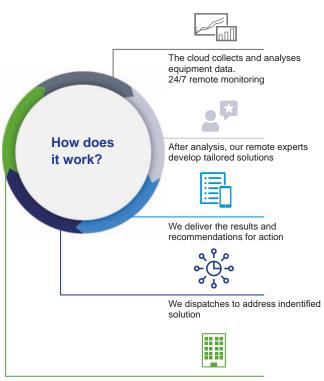
BOSSmini and BOSS enable remote system management. A simple Internet connection provides access to all the information on the system (Router LAN o 3G/4G). The Web interface, the same that is available to the local user, allows the monitoring and complete configuration of the installation: from the office or any other current location of the user.



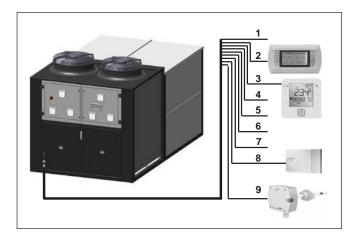
ABOUND HVAC Performance supervision solution

ABOUND HVAC Performance is a remote supervision solution dedicated to monitoring and controlling several CIAT machines in real time.

Its main advantages are:


- Improved energy performance. European regulations encourage buildings to install control and supervision systems to achieve the 2030 energy efficiency target of \geq 27%.
- Access to the operating trend curves for analysis.
- Improved availability rate for the machines.

BluEdge maintenance service


BLUEDGE

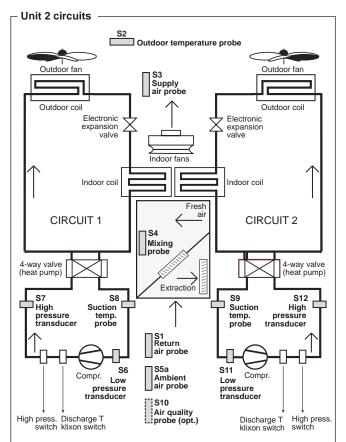
With your BluEdge service agreement, enabled by Abound HVAC Performance supervision solution, both you and our highly trained team will gain visibility, access expert advice and effectively optimise the lifecycle outcomes of your installation.

Your connected equipment provides status updates to our technical service

8.6 Customer connection

No.	VECTIOSPOWER PJ		0420 to 1200
1	Main power supply	400 III (±10%)	3 Wires + Ground + Neutral
2	Remote connection of VecticGD terminal (by default installed on the electrical cabinet) ①		telephone cable 6 wires standard (RJ12 connector)
3	Connection of TCO user terminal (optional) ②		2 x 1 mm ² (230V) + 1 shielded cable for communication type AGW20 / 22 (1 braided pair + drain wire + shielding)
4	Remote off/on (optional)		2 x 1 mm ²
5	General alarm signal (optional) ③		2 x 1 mm ²
6	Remote Cooling/Heating (optional upon resquest)		2 x 1 mm ²
7	Circulation pump signal for HWC (antifreeze sec.) (opt.)		1 x 1 mm ²
	Ambient probe	NTC	2 x 1 mm ²
8		RS485	4 x 0,5 mm ² + shielding ④
9	Air quality probe (optional)		3 x 1 mm ²

- ① By default, this control is supplied with a VecticGD graphic terminal, installed on the unit's electrical cabinet, but it can also be remotely connected:
 - Up to 50 m, it can be connected directly with telephone wire.
 - From 50 to 200 m, it is necessary to use the TCONN bypass cards and AWG 20/22 shielded cable with 2 twisted pairs.


The TCO user terminal (optional) can be installed in the electrical cabinet when the graphic terminal is remotely connected.

- ② The power supply of the electrical cabinet (230 V) must be used for terminal power.
- ③ The output for general alarm signal is not compatible with the following options:
 - hot water coil,
 - heat recovery coil,
 - rotary heat exchanger,
 - on/off signal for external humidifier.

With these options, possibility of general alarm upon request.

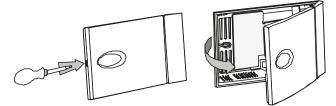
④ Up to four RS485 ambient sensors can be connected in series on the field-bus of the control board.

8.6 Location of sensors on the machine

Note: If the unit needs the outdoor humidity probe, used with enthalpic or thermoenthalpic free-cooling, this one (S5h) will be connected in the place of the ambient probe (S5a). In this case it is necessary to use a RS485 ambient temperature probe connected on the Field-bus.

8.7 Sensors connection by the costumer

The client must connect on-site the following probes:

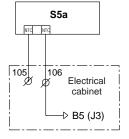

- Ambient NTC (standard) or RS485 (optional).
- Air quality (optional).
- Outdoor humidity (optional).

These probes are supplied inside the electrical cabinet.

Please refer to the wiring diagram and the Vectic control brochure, both provided with the unit.

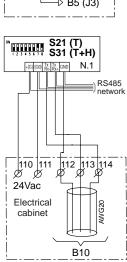
Connection of the ambient probe

• Open the case using a flathead screwdriver in the slot, paying extra care not to damage the electronic parts.


- Fasten the rear of the sensor case to the panel or the wall (for fastening the case, use the screws supplied with the fastening kit, paying attention to use the proper spacers, to not damage the sensor's electronics).
- This probe must be fastened to the panel or the wall of the room to be conditioned, at ca. 1.5 m height.

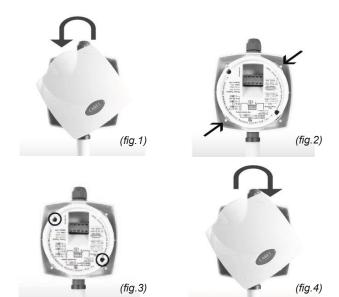
8 - ELECTRICAL CONNECTION

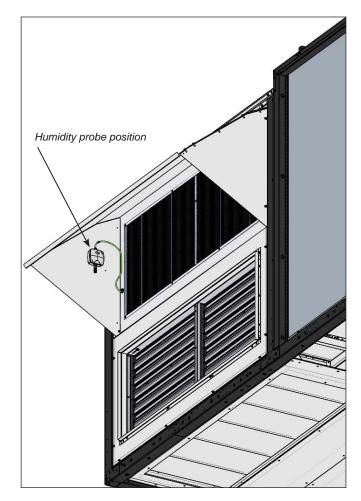
• This probe must be fastened to the panel or the wall of the room to be conditioned, at ca. 1.5 m height.


Electrical connection

- Make the electrical connection according to the unit configuration:
 - NTC Probe S5a: B5 (connector J3): with 2 x 1,5 mm² section cable, within a maximum distance of 30 meters.

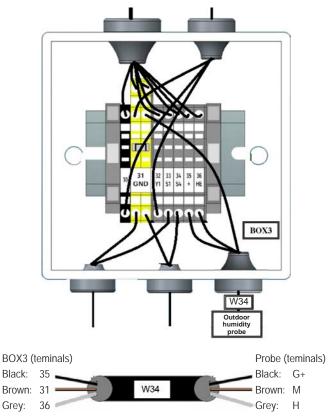
- 1 to 4 RS485 probes (connector J10): with AWG20 section cable, single braided pair preferably shielded with drain wire + Power supply 24 Vac (2 wires).
 - * Temperature:
 - S21 to S24.
 - * Temperature + humidity: S31 to S34.


Note: in the case of more than one probe, connection of the probes in series, in the RS485 network. Please, refer to the control manual.



Connection of the outdoor humidity probe (optional)

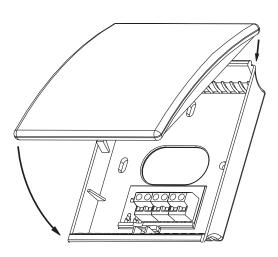
The outdoor humidity probe (optional), necessary for the enthalpic and thermo-enthalpic free-cooling, must be installed on-site, on the hood of the fresh air intake.


- Open the case by turning the top cover anticlockwise (fig1).
- Fasten the rear of the sensor case to the side panel of the hood (use the screws supplied together with the probe) placing the screws in the holes provided (fig.2).
- Make sure that the screws that hold the board protective cover are fastened tightly (fig.3).
- Close the sensor by turning the cover clockwise (fig.4).

The installer must feed the W34 cable through the M16 feedthrough to connect it in the BOX3, located inside the unit, behind the side access panel.

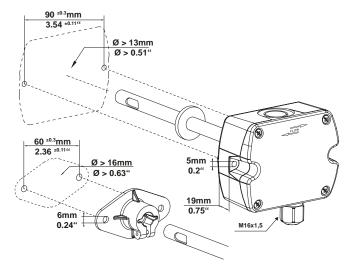
Electrical connection

VECTIOSPOWER TM PJ


Connection of the CO2 air quality probe

There are different options:

- Ambient air quality probe.
- Return air quality probe (duct-mounted).
- Probe installed on the "Lead" unit of the shared network (SHRD).
- Double quality probe:
 - two ambient air probes;
 - one ambient air probe and one outdoor air probe;
 - one return air probe (duct-mounted) and one outdoor air probe.

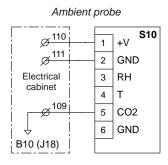

Installation in the environment

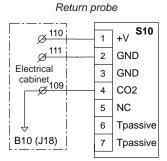
- This probe must be fixed to the interior wall of the room to be conditioned, at ca. 1.5 m height in the room and at least 50 cm from the next wall.
- It should never be mounted:
 - On outside walls.
 - In niches or behind curtains.
 - Above or near heat sources or shelves.
 - On walls covering heat sources such as a chimney.
 - In the radiation range of heat sources and lighting bodies e.g. spotlights.
 - In areas exposed to direct solar radiation.



Duct-mounted

This version can be connected to the air duct in these two ways:


Outdoor installation



Note: This probe must be located outdoors but under cover.

Electrical connection

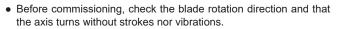
This probe (S10) is configured as analogue output 4...20 mA (0..2000 ppm), in the analogue input B10 of the control board (connector J18). Recommended cable section : 1,5 mm².

The second probe (S10-2) is configured as analogue output 4...20 mA (0..2000 ppm for ambient probe or 0..5000 ppp for outdoor probe), in the analogue input B1 of the expansion card pCOe with address 9 (connector J9).

Recommended cable section : 1,5 mm².

Ambient or outdoor probe:

Ø ¹¹⁰	1	S10-2
ø ¹¹¹	2	GND
Electrical	3	RH
cabinet	4	Т
Ø ²¹⁰	5	CO2
	6	GND
pCÒe addr.9		


9.1 Checks in the axial fans

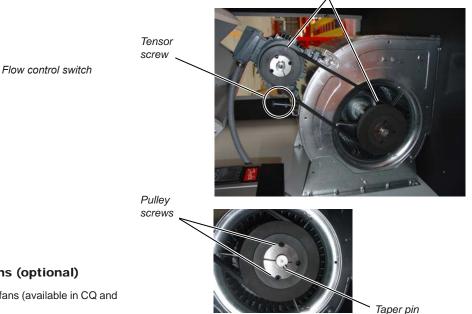
- Before commissioning, check the blade rotation direction and that the axis turns without strokes nor vibrations.
- Once running, check the operation conditions: pressures, flows and consumptions.
- With electronic fans (standard), check that they adapt their rotational speed based on the condensation or evaporation pressure.

Note: Optionally these units can be supplied with two-speed fans.

- 9.2 Checks in the EC plug-fans
- Before commissioning, check the blade rotation direction and that the axis turns without strokes nor vibrations.
- Once running, check the operation conditions: pressures, flows and consumptions.
- The coupling of characteristic curves of the fan and the room is very important, so that the flows and pressures provided to the duct network are as required.
- The variable-speed plug-fans, both supply and return, have a flow control switch. This switch comes from the factory adjusted to the nominal flow. However, the flow for different conditions can be readjusted on site from the VecticGD graphic terminal (please refer to the Vectic control brochure).

- Once running, check the operation conditions: pressures, flows and consumptions.
- The overlapping of characteristic curves of the fan and the room is very important, so that the flows and pressures provided to the duct network are as required.

Pulley and belt calibration



Attention: Before performing these operations, it is necessary to verify that the unit is disconnected from mains.

The centrifugal motorfans are coupled through pulleys and belts. In these fans, the following must be taken into consideration:

Pulley alignment:

- The pulleys must be on the same plane, so it is important to check them with the help of a ruler or a laser aligner.
- In case they are not aligned, remove the pulley screws, and after removing the taper pin, the set of pulley and taper can be slided over the axis (this action can be performed both in the motor as well as in the fan).

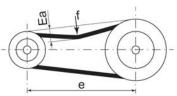
Pulleys must stay on the same plane

9.3 Checks in the centrifugal fans (optional)

If the unit is equipped with centrifugal return fans (available in CQ and CT assemblies):

VECTIOSPOWER TM PJ

9 - FANS AND AIR DUCTS


Belt tension:

After fixing the pulleys on the same plane, the belt tension is made by tightening the tensor screw.

Excessive tension on the belt can lead to premature wear on the assembly. Insufficient belt tension can cause slippage, overheating and premature wear of the belt.

It is essential to tension the belts using the "Deflection test" described below:

- The belt tension must be checked and corrected using a suitable measuring instrument (tensiometer or dynamometer).
- "Ea" calculation:

- Ea = (e x E)/100 = deformation in mm for a pulley centre distance of 100 mm
- e = pulley centre distance in mm
- E = see table below for the value
- f = force applied
- At the centre of the centre distance "e", apply a force "f", as determined in the table below, to each belt. Set the belt tension to obtain the calculated deflection "Ea".

Belt type	f(N) ①	d (mm) ②	E (mm) ③
SPZ 25	56 ≤ 71	2.45	
	25	< 71 ≤ 90	2.20
		< 90 ≤ 125	2.05
		125	1 90

① Load to be applied per belt f (N)

② Small pulley diameter (mm)

Important: During commissioning, the belt tension must be checked after 48 hours of operation.

The belt tension must be checked in all cases and before system start-up.

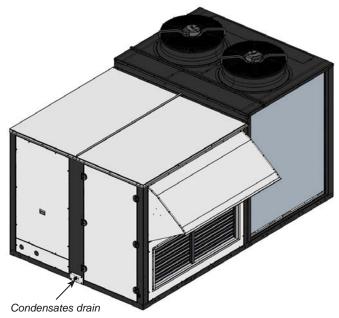
9.4 Air ducts connections

The air supply and return ducts must be calculated in accordance with the nominal flow and the unit's available pressure (refer to the technical characteristics table).

The duct calculation and design must be made by qualified technical personnel.

It is advisable to take into consideration the following recommendations:

- Flexible connections must be made between the ducts and the unit that avoid the noise and vibration transmission.
- Curves in the fans supply outlet must be avoided. It is recommendable to have a straight section of duct measuring approximately 1 metre. If it is not possible, they must be as smooth as possible, using indoor deflectors when the duct is of large dimensions.
- When making the ducts, direction sharp changes must be avoided since they can generate occasional pressure drops, which affect the available pressure and the flow. The location of discharge and aspiration grilles must be studied carefully to avoid the air recirculation and the transmission and generation of noises to the interior.
- Consideration should be given to the need to install filters on the return ducts, taking into account any particles in suspension existing which could settle inside the machine (e.g. textile fibres).
- Flexible connections must be made between the ducts and the unit that avoid the noise and vibration transmission.
- No matter the type of ducts used, they must be isolated and not be composed of materials that propagate fire nor expel toxic gases in the event of a fire. The internal surfaces must be smooth and should not pollute the air that circulates within them. In any case, the effective legislation about this issue must be respected.


It is mandatory to use all required PPE for work at height.

These units are equipped with a condensate drainage pan in the indoor circuit, with a 3/4° M gas threaded plastic drain connection.

The pan is sloped towards the drain, but it is important to check the levelling of the unit. A defective unit level can cause water overflowing. It is important to check that the drain is not clogged.

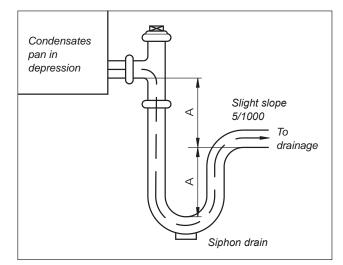
This drain pan is removable in models 0420 to 0720. It is secured to the unit using four M6 Allen screws.

Optionally, this pan can be made of stainless steel for corrosion protection.

Some options are equipped with a separate drain, gas threaded plastic:

- Cooling recovery circuit (CR and CT assemblies): 1/2" M.
- Rotary heat exchanger (CW assembly): 3/4" M.
- Gas burner (roof curb): 1/2" M.

With outdoor temperatures which are lower than 0° C the necessary precautions must be taken to prevent the water in the drain ducts from freezing.


Important: the water drain pipe must be provided with a siphon to avoid bad smell and water spills.

CONNECT SIPHON METTRE SIPHON PONER SIFON

Siphon installation norms

Perform the assembly as per the scheme of the attached starting diagram:

- Pan in overpressure: It is installed to avoid the access through the drain piping of bad smells.
- Pan in underpressure: Besides the previous application, water must be sucked from the pan:
 - For the correct siphon design, the "A" height must be at least twice that of the underpressure (mm.w.c) where the condensate pan is placed.
 - The drain piping must be slightly sloped to ease circulation towards the drain.
 - The original diameter of the piping must be respected. No reduction can be made.

Check the connection watertightness.

High pressure switch

Connected to the compressor discharge, it will stop its operation when the pressure at that point reaches the setpoint.

Specified pressure to activate the switch:

• R-410A: 42,0 bar.

• R-454B: 40,5 bar.

Type of reset:

- R-410A: Automatic reset (all models).
- R-454B: Automatic reset (models 0420 to 0960); Manual reset (1050 and 1200 models).

Safety valve

All models include a safety value in the high pressure line. Value tare value at 45 bar.

Note: The activation value of the safety is the same for R-410A and R-454B, as both refrigerants have similar working pressures.

Caution: Avoid the valve triggering direction

Low pressure safety

The low pressure safety is done by the Vectic electronic control via the measure of the low pressure transducer.

Protection for power lines

Protection for power lines of compressors with manual motor starters and power lines of fan motors with magneto-thermal switches.

These devices provide protection against overload, short circuit, phase failure and undervoltage.

Safety in electrical heaters

If the contactor of the electrical heaters becomes locked in the closed position, their magneto-thermal switches will automatically open using current emission coils connected mechanically to them. The electronic control will signal an alarm for "locked contactor of electrical heaters" causing the unit to stop working, except for the indoor fans which will continue to operate at 100% airflow.

Automatic switch in the control circuit

Magneto-thermal switch that protects the operation circuit against continuous surges as well as against high currents of short duration (short circuits).

Main door switch

By using a mechanical device, it impedes access to the electrical cabinet when the unit is with voltage.

DO NOT OPEN WITH VOLTAGE NE PAS OUVRIR SOUS TENSION NO ABRIR CON TENSIÓN

Defrost control

This safety device is intended to eliminate ice which could accumulate in the outdoor coil when the unit is working in heating mode.

Defrosting is carried out by the control depending on the outdoor temperature and the value measured by the low pressure transducer.

Caution: Condensation water falls directly to the ground and action is required to prevent slipping hazard

Safeties at the compressors

- These units have a klixon switch on the compressor discharge which stops the operation of the motor when there is excessive heating.
- Compressor lock: In the event of a power cut-off for a period longer than 2 hours, the compressors will be locked. The unit must remain 8 hours consecutively with voltage to unlock the compressors. A warning screen on the VecticGD shows the remaining time until the end of the locking.
- High temperature safety in tandem compressors (optional): Working in COOLING mode, when the outdoor coil pressure of a circuit overcomes a limit value one of the two compressors will be stopped, thereby avoiding the stop of both compressors due to the high pressure. This compressor will start working again if the pressure drops below a safety value.

Control of air flow

The supply plug-fans adapt their speed to the average flow measured by the differential pressure sensor and the value set as a setpoint in the electronic control.

Clogged filter detector (optional)

Differential switch for detection of the filter clogging level.

This switch is installed in the factory in the electrical cabinet.

Pressure reading is done thanks to two intakes within the air flow, such that a comparison is made between the pressure of the inlet air to the filter (positive) and the supply air of the same to the other side of the coil (negative).

The electronic control allows the settings selection for the clogged filter alarm: only indication (by default) or unit stoppage. Manual reset.

The switch set value for alarm signalling is configured in factory, depending on the filters selected for the unit, according to the following criterion (Standard EN 13053):

- Unit filter: the set value is the pressure drop for the filter classification, according to the attached table.
- Serial filters: the set value is the pressure drop of the highest efficiency filter + half of the pressure drop of the other filter, according to the attached table.

Filter classification	Pressure drop (Pa)
G4	150
M6 / F7	250
F9	350

Note: all filter frames have a sticker indicating the filter classification.

Important: This safety device is particularly recommended with gas burner.

Condensation and evaporation pressure control

This safety, integrated in the control, enables managing the outdoor fans when the units are working in cooling mode with low outdoor temperatures (condensation control) or in heating mode with high outdoor temperatures (evaporation control). This aids the unit's operation in all the seasons.

With electronic axial fans, the speed control is proportional, based on the average pressure measured by the pressure transducers.

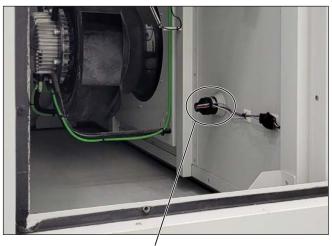
11 - SAFETY ELEMENTS

Refrigerant leak control

Possible refrigerant leakage in case of low pressure alarm. Although sometimes the alarm has other reasons, the control allows to detect possible leakage, improving the protection of the environment.

R-454B Refrigerant leak detector (standard)

Due to the A2L category of refrigerant R-454B (lightly flammable), it requires the installation of a refrigerant leak detector. This detector uses infrared instead of semiconductor technology with no need of calibration (self-calibration), with very fast time response, and high lifetime (life cycle: 15 years).


This detector integrates, in a single assembly, housing + electronics + sensor. It is divided into two parts, for easy inspection and sensor replacement. Degree of protection: IP65

This detector is installed on a panel next to the supply fans of the indoor circuit. This position ensures the correct reading of the gas concentration in the indoor coil.

If the sensor detects a high concentration of gas (parameterizable) the unit enters the PROTECTION MODE. The electronic control instantly disables the compressors and support elements, activates the indoor fans (supply and also return if available) at 100% of airflow (parameterizable) and opens the fresh and exhaust air dampers at 100% (if they are available). This happens temporarily, as long as the leak occurs or the sensor is held down with failure. If one of these two conditions ceases, the unit will return to the operating mode it had before the leak and the warning of protection mode will disappear.

If the unit is connected to a BMS monitoring system, the electronic control is prepared to send an alarm signal in case of leakage detection. In any case, alarms will be maintained until they are reset from the VecticGD terminal.

For more detailed information consult the "Maintenance" chapter.

Sensor

R-410A Refrigerant leak detector (optional)

The gas detector sensor is a device that signals leaks in refrigerant (in ppm). When the loss of a certain concentration is detected, the sensor sends the alarm to the control, which stops the unit and locally activates a acoustic and visual signal. This

detector incorporates configurable relay outputs, bluetooth connection and an user interface.

This allows prompt identification of gas leaks, guaranteeing the safety of any people in the vicinity.

This sensor is installed next to the supply fans. In case of alarm, it is reset manually.

Anti-fire safety

The electronic control can activate an anti-fire safety device that detains the unit when the return air surpasses a temperature of 60° C (by default). It cannot return to operation until the temperature has dropped to below 40° C.

Note: Vectic electronic control allows to select, by parameters, the operating logic for the fulfi Ilment of the ERP French fire regulations (Public access building), article CH40 paragraph 3.

Smoke detector (optional)

Smoke detecting station in accordance with the NF S 61-961 standard, 961, that uses a LED to indicate the installation status, and if the probe detects the presence of smoke in the installation, it stops the operation of the unit and gives the order to open or close the outdoor damper (configured by parameter).

To ensure compliance with the French regulations on Fire safety (ERP), it's possible to configure the opening of the fresh air damperand the exhaust air damper to 100% (return air damper closed).

The station is installed in the factory on a panel next to the electrical cabinet. To reset the station it is necessary to disassemble the protection box.

The probe is placed next to the supply fans.

Smoke detecting probe

Anti-freeze protection for low outdoor temperatures (optional)

• Electrical heater for protecting the components of the electrical cabinet. This safety device is mandatory for an outdoor temperature lower than -10.2°C WB.

A reinforced electrical heater is mandatory for a temperature lower than -14°C WB.

The electrical heater(s) is(are) activated when the thermostat installed inside the electrical cabinet detects that the temperature drops below 5° C.

 Compressor with low-temperature protection using an additional crankcase heater: mandatory for an outdoor temperature lower than -10.2°C WB.

Activation temperature: -10.2°C WB.

 Electrical heater for antifreeze protection of dampers of the mixing box: mandatory for an outdoor temperature lower than -14°C WB (upon request).

Activation temperature: -14°C WB.

 Electrical heater for protection of the gas burner housing (optional): mandatory for an outdoor temperature lower than -14°C WB (upon request).

Housing temperature for activation: +1°C.

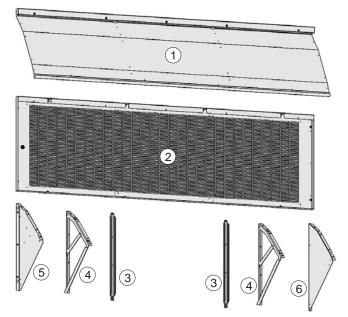
• Dampers of the mixing box with springs for automatic closing in the case of a cut in power (upon request).

Remote alarm (optional)

Vectic control allows the management of a relay for remote alarm signalling.

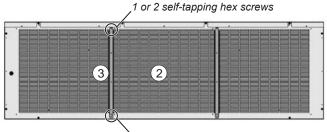
Note: The output for general alarm signal is not compatible with the following options: hot water coil, heat recovery coil, rotary heat exchanger and on/off signal for external humidifier.

In this case, upon request, it would be possible to have a general alarm output in an input/output expansion module (see the Vectic control manual).

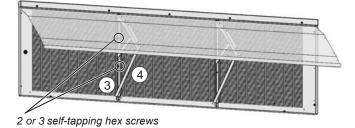

12.1 Dampers hoods

Depending on the assembly chosen, the fresh air and exhaust air damper hoods are supplied folded down, to be fitted on site by the installer.

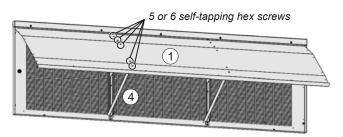
The elements necessary for the assembly of the hood (1) are:


- two or three strips (depending on model) for reinforcement of the grid panel (3).
- two or three triangles (depending on model) for reinforcement of the hood (4).
- a left side closure part (5).
- a right side closure part (6)

These elements are supplied screwed to the grid panel (2). Simply raise the hood (1) and remove the screws that attach these ones to the panel. These screws wil not be used for the assembly of the hood. All the screws required for this assembly are supplied in a bag. They are 4.8 x 19 mm self-tapping hex screws.

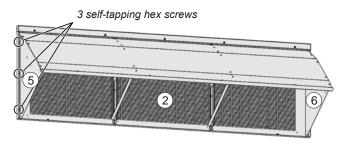

Step 1: Raise the hood (1) and place the reinforcing strips (3) on the grid panel (2). The panel has 3 or 4 holes (according to model) for the placement of each of the strips.

The number of strips depends on the model: 2 strips (models 0420 to 0720) and 3 strips (models 0760 to 1200).



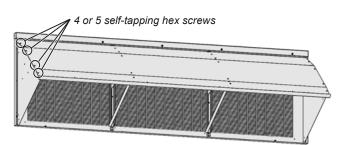
2 self-tapping hex screws

Step 2: Place the reinforcement triangles (4) and attach them to the reinforcement strips (3) with 2 or 3 screws (depending on assembly).



Step 3: Fasten the reinforcing triangles (4) to the hood (1) using 5 or 6 screws (depending on assembly).

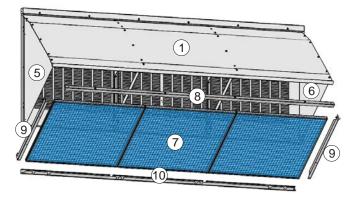
Note: Protective caps for all screws that are going to stay exposed to the weather are sent in the screws bag.


Step 4: Place the left side (5) and right side (6) closure parts. These are fixed to the grid panel (2) using 3 screws each.

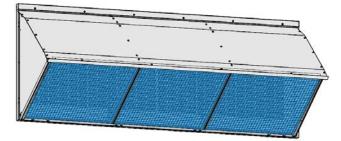
Important: The left and right closing parts are not interchangeable. Each one must be mounted in the correct position in order to ensure that the hood is perfectly closed.

Step 5: Finally, screw the left side (5) and right side (6) closure parts to the hood (1) using 4 or 5 screws (depending on assembly).

Important: Always check that the union of two panels using selftapping screws is properly secured. The self-tapping screws must not be unscrewed frequently to prevent any clearance on the threading.


Caution: the detachment of the hood due to wrong implementation of the above steps may cause personal injury and property damage.

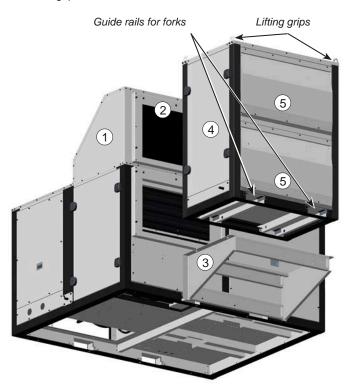
12.2 Stop-drop on the fresh air intake


The stop-drop can be installed on the fresh air intake. It is recommended in cases where a high moisture content in the air is foreseen. The stop-drop (7) is placed after the hood:

- First, the part (8) is placed inside the hood (1), using 4.8 self-tapping hex screws. If the stop-drop has been ordered together with the unit, this part will be installed in the factory.
- Next, the side profiles (9) are fitted onto the side parts of the hood (5) and (6), each with 2 of the 4.8 self-drilling hex screws.
- Finally, the profile (10) is fitted onto the panel (2). To do this, unscrew the lower screws on the panel (M6 Allen) and screw them back on, attaching the profile.

All the screws required for this assembly are supplied in a bag.

The following image shows the stop-drop placed:



12.3 Passive recovery (CW assembly)

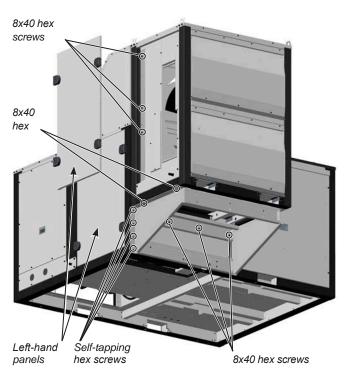
Transport and handling

The module with the rotary heat exchanger and its support bed are supplied disassembled with the unit, for installation on site.

- The module can be handled safely by using a forklift truck. The base frame features guide rails to accommodate the forks of the fork-lift truck. These guide rails avoid any slippage.
- For transport and lifting up to the roof using a crane, a rocker arm as well as approved slings must be used. These slings are attached on the grips fitted to the cover of the module.

Installation

- The fresh air housing (1) is factory-installed.
- First, the front panel (2) is secured using 8x40 hex screws.
- Then, in models 0420 to 0720 the support bed (3) is fitted. This is fixed to the panel using 4.8 self-tapping hex screws on the sides and 8x40 hex screws on the front. The recovery module is positioned on the support bed but without efforts on it.

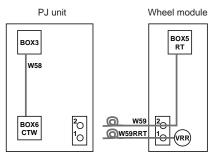

Note: In models 0760 to 1200 there is no such support bed.

- Next, the module is coupled to the unit. Do not remove the fork-lift truck until the module is not secured to the unit.
- The module is secured to the unit using 8x40 hex screws. To do this, the side panels must be removed from the module. The right-hand panel (front view) is secured using M6 Allen screws, while the left-hand panel (4) incorporates dual locks.

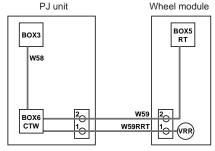
Note: Check that the locks are not blocked. Open the locks with a 4 mm Allen key (anticlockwise).

- In models 0420 to 0720, the module is screwed to rest on the support bed using 8x40 hex screws on both sides.
- Finally, raise the hoods (5) and follow the assembly procedure described in section 12.1.

Note: All the screws required for this assembly are supplied secured on the module and the support bed.

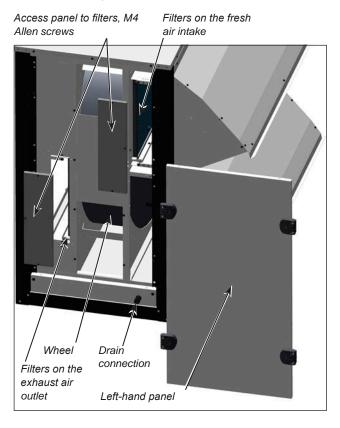


Electrical connection to be made by the costumer:


Note: see the wiring diagram included with the unit for a more detailed information about the wiring.

The connection is done trought the left-hand panels (front view).

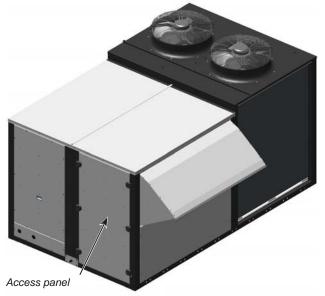
Initial location of the cables for connection:


Connection to be made by the costumer:

Access to the inside of the recovery module

• The inside of the heat recovery unit module is accessed via the left-hand panel (front view), for maintenance tasks concerning the filters and the condensate pan (3/4" M gas threaded plastic drain connection). This panel features dual locks. Check that the locks are not blocked. Open the locks with a 4 mm Allen key (in an anticlockwise direction).

The access panels to the filters are secured using M4 Allen screws. Note: The general procedure for removing and cleaning the filters is described in chapter "Maintenance".


• The wheel motor can be accessed via the right-hand panel (front view). This panel is secured using M6 Allen screws.

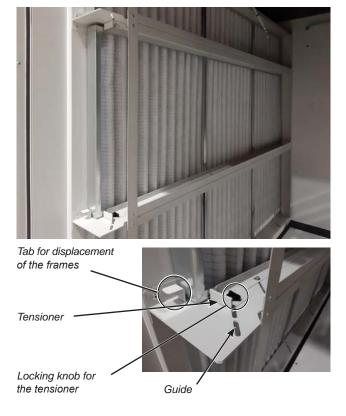
12.4 Air filters

- These units include G4 gravimetric filters standard type, which can be replaced by:
 - Gravimetric filters G4 with low pressure drop.
 - Gravimetric filters G4 standard type + folded opacimetric filters F7.
 - Gravimetric filters G4 with low pressure drop + folded opacimetric filters F7.
 - Dual-stage of folded opacimetric filters: M6+F7 or F7+F9.

• The access panel to the filters incorporates dual locks, they can function as hinges or can be used to remove the panel.

Note: Check that the locks are not blocked. Open them with a 4 mm Allen wrench (in an anti-clockwise direction).

• The thickness of the frames is 25 mm for the G4 standard type and 50 mm for the G4 low pressure drop and all opacimetric filters.


Filters supplied from the factory can be replaced on site by other types of filters with different thickness.

The filter holder structure supports the following filter combinations: 25 mm, 25 mm + 50 mm, 50 mm + 50 mm.

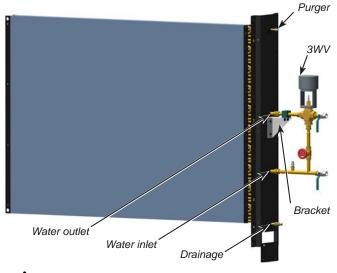
The filter holder structure incorporates a tensioner that can be moved along a guide to adjust the width according to the chosen combination. With the help of a locking knob, the position of the frames is locked after placement.

To extract the frames from each row, simply slide the tab.

Note: the filters cleaning procedure is explained in the chapter of "Maintenance".

12.5 Heat recovery coil

This option is compatible with C0, CS, CQ and CT assemblies.

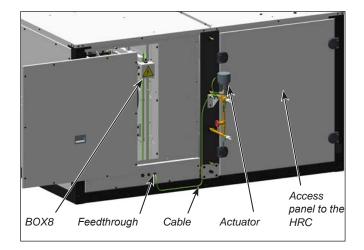

• The heat recovery coil (HRC) is placed between the main indoor coil and the air filters. The function of the heat recovery coil is to pre-heat the air that will pass through the main indoor coil. For this, it uses the temperature of an outdoor water installation.

The unit incorporates an anti-freeze thermostat as safety system.

• The coil is supplied with a 3-way valve kit (3WV) for installation onsite, outside the unit.

Parts of this kit are shipped separate for installation by the installer: threaded pipe sections, purger, 3-way valve and actuator, ball valves, gate valve, bracket and clamp.

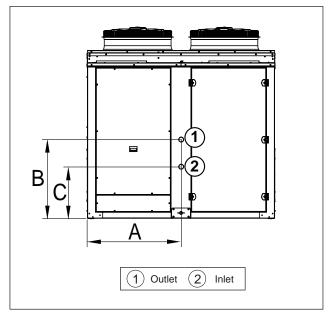
First, it is advisable to place the bracket of the kit, using 2 of 4.8 self-tapping hex screws.



It is recommended to insulate all piping located on the outside of the unit.

• The unit's electronic control manages both the heat recovery coil and the 3-way valve.

The cable with the wires for the electrical connection of the actuator must be connected in BOX8.


The installer must feed the W43 cable through the M16 feedthrough located in the bottom panel of the PJ unit, and next, connect it to BOX8.

<u>W43 (</u> E	<u>30X8)</u>	Actuator
40	\rightarrow	COM
41	\rightarrow	24V
42	\rightarrow	Y1

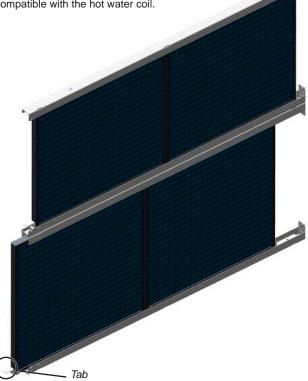
Note: see the wiring diagram included with the unit for a more detailed information about the wiring.

 The inlet/outlet connections of the coil are located on a side pillar of the unit. The position is shown in the following diagram.

Dimensions (mm)	А	В	С	Ø I/O
0420 to 1200	1.122	777	427	1"

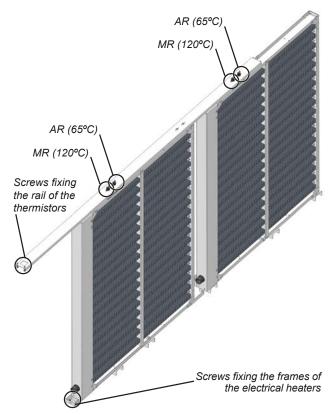
- Coil filling:
 - The coil filling must be made with the purger open until water runs through it, which is when it is time to close it.
 - Cut off the water supply and let the bubbles generated go up to the highest coil point and eliminate by opening the purger.
 - Pour more water into the circuit and repeat the previous steps.
 - Activate the water pump (to be foreseen by the installer) and repeat the previous steps until no air noises are heard in the piping, which is when the filling of the installation will have been finished successfully.
- In case of long unit stops, and forcibly if they happen in the winter season, the coil must be emptied.
- To prevent the water from freezing, with this option the unit always has an anti-freezing thermostat. Add glycol to the water if necessary.
- The direction of the water flow must be correct and so the following indications must be observed:

Note: the heat recovery coil is not compatible with the hot water coil or the gas burner.


12.6 Stop-drop in the indoor coil

- The stop-drop can be installed in the indoor coil. It's recommended in cases where a high moisture content in the air is foreseen or when the air flow is high.
- The stop-drop is accessed by that same panels of electrical heaters, since it is placed between the indoor coil and the electrical heaters (see previous image).

It's accessed by removing the panels (1) and (2), and then the inside panel (3).


• The stop-drop frames are easily removable. They can be moved by rail by lifting the tab.

Note: the stop-drop in the indoor coil is not compatible with the hot water coil.

- To remove the frame(s) with the electrical heaters it is necessary to disconnect the wires from the connection box and unscrew the frame(s) attachment screws (M4 Allen) placed on the lower rail.
- Each frame incorporates safety thermistors for protection of the unit against excess temperature. One of them has automatic reset (AR) and tare value at 65°C, the other one has manual reset (MR) and tare value at 120°C. To rearm the manual thermistor it is necessary to remove the upper rail, fixed with two 4.8 self-tapping hex screws.

Important: If the contactor of the electrical heaters becomes locked in the closed position, their magneto-thermal switches will automatically open using current emission coils connected mechanically to them. The electronic control will signal an alarm for "locked contactor of electrical heaters" causing the unit to stop working, except for the indoor fans which will continue to operate at 100% airflow.

12.7 Electrical heaters

- The auxiliary electrical heaters are ready for operation in two power stages. This heaters are managed by the electronic control of the unit that can activate them in the following cases:
 - As a backup in HEATING mode, following the input of all the available compressors.
 - In HEATING mode, instead of compressors.
 - During the defrosting operation if selected as support.
 - As a backup in COOLING mode in accordance with the return and supply temperatures.
- Up to 3 values of total power available for each model:

PJ	E0L (Low)	E0N (Nominal)	E0H (High)
0420 to 0500	27 kW	36 kW	54 kW
0560 to 0720	36 kW	54 kW	72 kW
0760 to 0960	45 kW	72 kW	90 kW
1050 to 1200	54 kW	72 kW	108 kW

• The electrical heaters are assembled and connected inside the unit. They can be accessed by the same panel that the supply fan.

These heaters are accessed by removing the panels (1) and (2), and then the inside panel (3), all of them fixed with M6 Allen screws.

12.8 Hot water coil

- Hot water coil with a three-way valve managed by the electronic control of the unit. The water coil could be activated in the following cases:
 - As a backup in HEATING mode, following the input of all the available compressors (by default) or as first control stage.
 - As a backup in HEATING mode in accordance with the supply temperature.
 - During the defrosting operation if selected as backup.
 - With the unit running or shut down if an anti-freeze alarm is triggered.
 - With the unit stopped when the outdoor temperature drops below 4°C. In this case the circulation pump of the water circuit is connected.
 - As a backup in COOLING mode in accordance with the return and the outlet temperatures.

Note: the hot water coil is not compatible with the stop-drop in the indoor coil or the heat recovery coil.

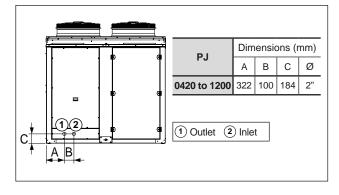
• This option always incorporates an anti-freeze thermostat as safety system.

- This thermostat is located on the panel next to he supply fans, if necessary to reset the safety.
- Great Cold option (upon request): with additional anti-freeze technology based on the water temperature. This protection is made up of a circulation pump as well as two probes inserted in the input and the output of the coil.

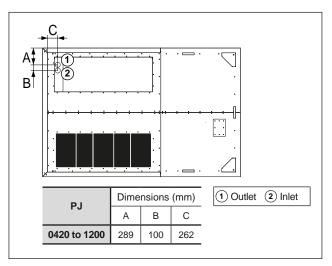
Important: this option is mandatory for an outdoor temperature lower than -20°C WB. Consult for percentages of glycol water above 20%.

 The pump of the water circuit has to be activated whenever the 3-way valve is switched on. It is the installer's responsibility to connect the pump to the electronic control, except with the factory-installed GREAT COLD option. Please refer to the wiring diagram provided with the unit.

Operation of the pump with the GREAT COLD option (upon request:


- Antifreeze protection: if the water temperature in the coil drops below 4°C, the control activates the pump and the 3-way valve opens to 100%. The pump stops when 7°C are reached.
- Safety of minimum outdoor temperature: if the outdoor temperature drops below 4°C, the control activates the pump and the 3-way valve opens to maintain, in the water coil, a water outlet temperature of 10°C in ON operating mode and 15°C in OFF operating mode.
- Coil filling:
 - The coil filling must be made with the bleeder valve open until water runs through it, which is when it is time to close it.
 - Cut off the water supply and let the bubbles generated go up to the highest coil point, which is the same as the bleeder valve, and eliminate by opening the purger.
 - Pour more water into the circuit and repeat the previous steps.
 - Activate the water pump (to be foreseen by the installer, except with the GREAT COLD option) and repeat the previous steps until no air noises are heard in the piping, which is when the filling of the installation will have been finished successfully.

- In case of long unit stops, and forcibly if they happen in the winter season, the coil must be emptied.
- To prevent the water from freezing, with this option the unit always has an anti-freezing thermostat. Add glycol to the water if necessary.
- The direction of the water flow must be correct and so the following indications must be observed:

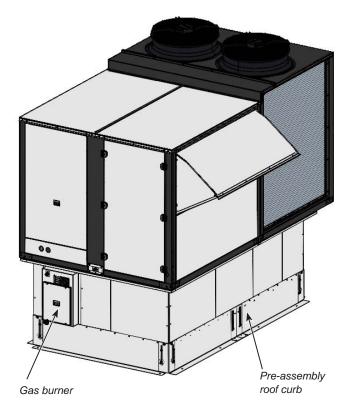

• The inlet/outlet connections of the hot water coil are located inside the unit and the connection is made via the side panel.

The position of the sheet metal precuts on the side panel are shown in the following diagram.

These connections can also be made via the base of the unit using flexible piping (for installation with pre-assembly roof curb).

The position of the sheet metal precuts on the pre-assembly roof curb are shown in the following diagram.

Note: With hot water coil (optional), the length of the supply duct is reduced by 151 mm.


12.9 Gas burner

Natural or propane gas burner with modulating actuator, in accordance with the Gas Directive 2009/142/EC, installed inside a pre-assembly roof curb. The PJ unit with lower supply will be placed on this roof curb. EC certification: 0476CQ0451.

Note: the gas burner is not compatible with the heat recovery coil.

• Two powers available for each model:

PJ	0420 to 0500	0560 to 0720	0760 to 1200
G0N (Nominal)	PCH080	PCH130	PCH160
G0H (High)	PCH130	PCH160	PCH210

Important: The staff responsible for the installation, operation and maintenance of this burner must always strictly follow the instructions given in this manual, as well as in the manufacturer's (APENGROUP) installation and maintenance brochure for the burners in the PCH series, supplied with the unit.

Characteristics of the gas burner

- Air is heated by contact with the surfaces of the combustion chamber and the heat exchanger pipes.
 - The heat exchanger complies with construction requirements set by EN1196 regulations for equipment where combustion gases produce condensate.
 - The combustion chamber is entirely made of stainless steel whilst surfaces of components where condensation occurs (such as pipe bundle and exhaust hood), are made of AISI 441, in order to provide high resistance to condensation.

The following table illustrates the types of stainless steels used:

USA-AIS	EN-No	COMPOSITION
AISI 430	1.4016	X6 Cr17
AISI 441	1.4509	X2 CrTiNb 18

- The burner is entirely made of stainless steel with special

mechanical solutions to ensure optimal reliability and performance levels, as well as high thermal and mechanical resistance.

- The PCH heater is a modulating type; the thermal power output and, therefore, the thermal capacity (fuel consumption) vary according to the demand for heat. When the demand for heat from the environment drops, the heater uses less gas, increasing its performance up to 109% (performance on Hi).
- Inherent safety:
 - The performance increase at minimum power is achieved by using a sophisticated air/gas mixing technique and by adjusting at the same time the combustion air and the fuel gas.
 - This technology increase the heater safety as the gas valve supplies the fuel according to the air flow. The CO₂ content, unlike atmospheric burners, remains the same throughout the heater operating range, allowing it to increase its performance when the thermal power drops.
 - If there is no combustion air, the valve will not supply gas; if the combustion air flow drops, the valve will automatically reduce the gas flow yet will keep its combustion parameters at optimal levels.
- Lowest polluting emissions. The premixed burner, in combination with the air/gas valve, ensures a "clean" combustion by emitting a very low level of pollutants. Low NOx emissions < 70 mg/kWh HCV (class 5, according to standard EN 297).

Note: Burners must not exceed NOx:70mg/kWh HCV emission values from January 1st, 2021 (according to European Regulations 2016/2281).

- The control located inside the burner housing allows the service centre to check and view the working phases and identify any faults that may have occurred.
- The electronic control of the unit will only manage the burner connection as heating support depending on the ambient conditions.

Note: the main technical characteristics of the burner can be found in the technical brochure.

Safety instructions

Safety instructions to be followed by the staff responsible for work with this burner are described below.

General cautions

This burner module must be used only for the applications it was designed for. Any other wrong or unreasonable use must be regarded as improper and therefore hazardous.

During the installation, operation and maintenance of the burner described in this manual, the use must always strictly follow the instructions given in all the chapters of this operating and maintenance manual.

The condensing warm air heater must be installed in compliance with current regulations, according the manufacturer's instructions and by qualified staff, technically specialised in the heating field.

When first switched on, conversion between different types of gas and maintenance operations must be carried out only by staff provided by Service Centres authorised by current and older regulations. For more information, please contact us.

The warranty conditions are specified on the warranty certificate supplied with this burner module.

The manufacturer declares that the unit has been manufactured in compliance with UNI, UNI-CIG, CEI technical standards and with all relevant legislation, as well as with the 90/396/EEC gas directive and the later 2009/142/EC Directive.

12 - FACTORY OPTIONS AND ACCESSORIES

Attention: In compliance with the requirements of the Gas Directive 90/396 EEC it is strictly prohibited to alter the burner or the electronic control unit.

• Fuel

Before starting up the heater, make sure that:

- the gas mains supply data is compatible with the data stated on the nameplate;
- the combustion air intake ducts (when fitted) and the fume exhaust pipes are those specified by the manufacturer;
- the combustion air is supplied in such a way as to avoid even partial obstructions of the intake grille (caused by leaves etc.);
- the fuel intake internal and external seal is checked during the testing stage, as required by applicable standards;
- the burner is supplied with the same type of fuel it has been designed for;
- the system is correctly sized for such flow rate and is fitted with all safety and monitoring devices required by applicable standards;
- the inside of the gas pipes and air distribution ducts for ducted heaters has been thoroughly cleaned;
- the fuel flow rate is suitable for suitable for the power required by the burner;
- the fuel supply pressure is between the range specified on the nameplate.

If the burner is not going to be used over a prolonged period the gas supply valve must be closed.

Gas leaks

If there is gas smell:

- do not operate electrical switches, telephones or any other object or device that could produce sparks;
- immediately open doors and windows to create an air flow to vent the gas out of the room;
- close the gas valves;
- call for qualified staff.

Supplying the gas circuit with pressure higher than 60 mbar is strictly prohibited. Such pressures could cause the valve to break.

• Operation

Do not allow children or inexperienced people to use any electrically powered equipment.

The following instructions must be followed:

- do not touch the equipment with wet or damp parts of your body and/or with bare feet;
- do not leave the equipment exposed to the elements (rain, sun etc....) unless it is adequately protected;
- do not use the gas pipes to earth electrical equipment;
- do not touch the hot parts of the heater, such as the fume exhaust duct;
- do not wet the heater with water or other fluids;
- do not place any object over the burner;
- do not touch the moving parts of the burner.

Maintenance

Maintenance operations and combustion inspections must be carried out in compliance with current standards.

Before carrying out any cleaning and maintenance operations, isolate the heater from the mains power supply from the switch located on the electrical system and/or on the shut-out devices.

If the heater is faulty and/or incorrectly operating, switch it off and do not attempt to repair it yourself, but contact our local Technical Service.

All repairs must be carried out by using genuine spare parts.

Failure to comply with the above instructions could compromise the safety of the equipment and invalidate the warranty.

If the equipment is not used for long periods, shut the gas supply off through the gas stopcock and disconnect it from the power supply.

If the heater is to be put out of service, in addition to the above operations, potential sources of hazard on the unit must be removed.

It is strictly forbidden to obstruct the Venturi pipe inlet, located on the burner-fan unit, with your hands or with any other objects.

Any obstruction could cause a backfire from the premixed burner.

General recommendations

Location

These roof curb with integrated burner are designed to be coupled with an PJ unit (roof-top installation). Make sure they are not fitted near areas where there is a risk of fire (flammable dust) or explosion, or in areas where aggressive products are kept, e.g. trichloroethylene, perchloric acid, etc.

Delivery of the roof curb with gas burner

Check the condition of the equipment upon delivery. Check that the details on the label, the packing and the name plate match the order. If equipment has been damaged, or there is a shortfall in delivery, notify accordingly.

Burner identification

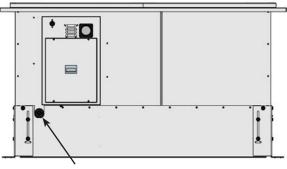
The roof curb with the burner includes a name plate featuring the main gas characteristics as well as the roof curb serial number.

GAS INFORMATION		
COUNTRY	CONSUMPT.	m3/h
GAS	PRESSURE	mbar
CATEGORY	ТҮРЕ	
PIN	wo	
/	/	
Roof curb with burner CE certificate No.	Burner model	Roof curb serial No.

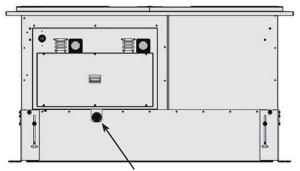
Important: The serial number must be used in all communication regarding the unit.

Transport and installation

Follow the recommendations given in section 7.4 which details how to handle and fit the adjustable roffcurb, and how to fit the PJ unit onto this roof curb.

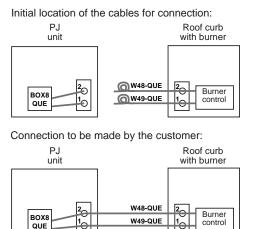

Connection of the burner condensate drain

These units are equipped with a junction for draining the burner condensates drain pan. Threaded connector 1/2" M in PVC.


To facilitate drainage, the structure of the group of generator pipes slopes slightly towards the discharge.

If the unit is going to be installed outdoors in a location where there are never low temperatures, the drain junction does not have to be connected to any pipe. It must simply be ensured that the water does not stagnate.

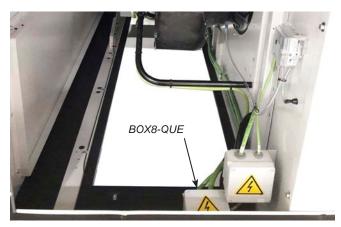
If the condensates are going to be discharged into a pipe do not seal it directly at the condensate outlet. If the water were to freeze in the pipe this could block the discharge of condensates and cause the water to accumulate inside the exchanger.


Condensate drain in PCH080

Condensate drain in PCH130. PCH160 and PCH210

Electrical connection of the burner

It is necessary to communicate the burner control with the electrical cabinet of the PJ unit. The costumer must connect the cables coming from the burner to the connection box "BOX8-QUE" that is located inside of the PJ unit. This box is accessed via the same panel that the supply fans.



W49-QUE

contro

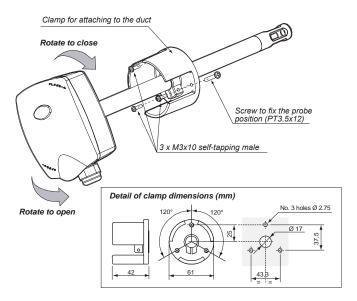
Note: see the wiring diagram included with the unit for a more detailed information about the wiring.

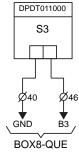
The following image shows the location of the connection box "BOX8-QUE".

Connection of the outlet probe

The connection of the outlet temperature probes must be performed on-site. This probe is supplied inside the electrical cabinet of the PJ unit.

Make the electrical connection of the probe (S3) to the connection box "BOX8-QUE" that is located inside of the PJ unit, using 2 x 1mm² section cable.

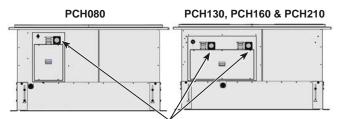

Note: this cable is **not** supplied with the probe.


Please refer to the wiring diagram and the Vectic electronic control brochure, included with the unit.

For the electrical connections, remove the top cover of the sensor. Remove the cover by rotating it anticlockwise.

In order to guarantee the correct measurement of the outlet air temperature this probe will be positioned at 1.5 metres as a minimum from the outlet mouth at the bottom of the duct and as near to the middle as possible inside this duct. The probe is connected to the air duct using the special fastening bracket.

- Fasten the bracket to the air duct;
- Insert the rod on the bracket to the required depth;
- Tighten the screw on the bracket to fasten.



Connections at the flue

Important: The flue of the gas burner is not supplied with the unit. Its design and installation is the responsibility of the installer and must comply with all the directives and regulations in force in the installation location.

Fumes exhaust: internal Ø 80mm

This PCH burner module is fitted with a watertight combustion circuit and with the burner fan located upstream of the heat exchanger.

Connection to the flue, according to how the heater is installed, can be made as "C" type, with combustion air being drawn from outside, or as "B" type with combustion air being drawn from the heater installation site.

If the heater is installed outdoor, a "B" type installation is also a "C" type.

More specifically, the heater is certified for the following exhausts: B23P-C13-C33-C43-C53-C63; for more information on the flue types, please refer to current regulations.

To fit the fume exhausts, certified pipes and terminals must be used, taking into account that the modules are of a condensing type; the following material must be used:

- aluminium with a thickness of at least 1.5 mm;
- stainless steel with a thickness of at least 0.6 mm; the steel must have a carbon content of at least 0,2 %.

Use sealed pipe to prevent condensation from leaking from the pipes; the seal must be adequate to withstand a fume temperature ranging between 25°C and 120°C.

The flue does not need to be insulated to prevent the build-up of water in the pipes, as this does is not detrimental to the heater, which is fitted with a water trap. Insulate the pipe if required to protect the flue from accidental contact.

For the air intake, use:

- aluminium with a thickness of at least 1.0 mm;
- stainless steel with a thickness of at least 0.4 mm;

Important: The horizontal sections of flue, which make up the fume exhaust, must be installed with a slightly incline $(1^{\circ}-3^{\circ})$ towards the heater, in order to prevent the build of condensation in the exhaust.

Common exhausts (PCH130, PCH160 and PCH210)

Where possible, it is always preferable to use independent exhausts; PCH module exhausts are pressurised, therefore in this way it is possible to prevent incorrect sizing from causing a system malfunction.

When common exhausts are fitted, they must be designed by providing some anti-reflux valves at the outlet of each flue, before the connection with the common flue, preventing a module from discharging it own combustion gases inside another module.

Terminal configuration

• Type B23P:

Open combustion circuit: the gases produced by the combustion are discharged outside, on a wall or on the roof, and the combustion air is directly drawn from the site where the equipment is installed.

In this case, the standards UNI-CIG 7129 and UNI-CIG 7131 require the provision of suitable vents on the walls.

Note: It is compulsory to fit an IP20 safety mesh to prevent solids with a diameter higher than 12mm from entering the combustion air intake; at the same time, the mesh opening must not be lager than 8mm.

• Type C13:

Sealed combustion circuit (type "C") connected to a horizontal terminal on the wall by means of its own ducting.

• Type C33:

Sealed combustion circuit (type "C") connected to a vertically installed terminal (on the roof) by means of its own ducting.

• Type C53:

Sealed combustion circuit (type "C") connected by means of its own ducting split in two terminals which could end up in areas with different pressure (such as a ducting connected to the roof and a second one connected to the wall).

• Type C63:

Sealed combustion circuit (type "C") connected to an approved and separately sold combustion air supply and combustion products exhaust system.

Selection Guide

If the terminal is not directly connected to the heater and, therefore, extra routing is required, according to the length of the ducting, the diameter of the selected terminals, extensions and bends must be checked.

After establishing the routing, the pressure drop must be calculated for each component; each component has a different pressure drop value as the glue gases flow rate is different.

The pressure drops of each component identified must be added, checking that the result is no higher than the value available for the PCH heater module used; if a combustion air supply pipe is fitted, the pressure losses must be added to the fume exhaust pressure drop.

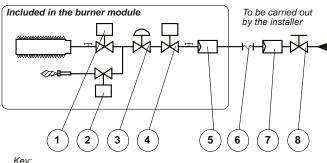
If the sum of pressure drops caused by the fittings are higher than the pressure available at the exhaust, ducting with higher diameter must be used, rechecking the calculation; a pressure drop higher than the pressure available at the fume exhaust reduces the heater module thermal output.

If the duct routing requires the use of bends, the length required must be subtracted from the available length:

- Ø 80 wide radius bend at 90° EqL = 2.1m
- Ø 80 wide radius bend at 45° EqL = 1.1m
- Ø 100 wide radius bend at 90° EqL = 3.5m
- Ø 100 wide radius bend at 45° EqL = 1.6m

Pressure drop for terminals and exhaust ducting:

PCH model	080	105	130 (2 x 065)	160 (2 x 080)	210 (2 x 105)
Pressure avail. at the exhaust (Pa)	120	120	120	120	120
Component		Р	ressure dr	op (Pa)	
Ø 80 pipe (1 metre)	7,3	11,0	4,6	7,3	11,0
Ø 100 pipe (1 metre)	2,2	3,5	1,3	2,2	3,5
Ø 80 wide radius bend at 90°	15,0	22,2	9,5	15,0	22,2
Ø 100 wide radius bend at 90°	8,2	12,0	5,1	8,2	12,0
Ø 80 wide radius bend at 45°	7,3	11,0	4,6	7,3	11,0
Ø 100 wide radius bend at 45°	3,5	5,5	2,2	3,5	5,5
Ø 80 - 100 adaptor	1,8	2,7	1,2	1,8	2,7
Ø 80 hooded terminal	16,0	20,0	14,0	16,0	20,0
Ø 100 hooded terminal	12,0	15,0	10,5	12,0	15,0

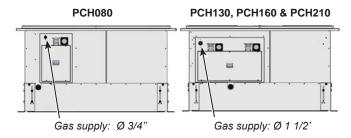

Gas connection

Use the gas line connections only with EC certified components.

The PCH module is supplied complete with a dual gas valve, gas stabiliser and filter. All components are fitted inside the burner housing.

To complete the installation, as required by current standards, an antivibration joint and a gas valve must be fitted.

Note: A EN216 certified gas filter with filtration level lower or equal to 50 micron must be used, with no pressure stabiliser, a wide range gas filter must be used since the filter supplied as standard, upstream of the gas valve, has a limited area.



Key:

- 1. Main burner gas solenoid valve
- 2. Pilot burner gas solenoid valve
- 3. Pressure stabiliser:
- 4. Safety gas solenoid valve
- 5. Gas filter (small section)
- 6. Anti-vibration joint
- 7. Gas filter (large section)
- 8. Gas valve

Important: For a correct maintenance, connect the PCH module by means of a seal and swivel gasket. Avoid using threaded connected directly on the gas connection.

During the installation, tighten the external gas supply pipe but without exceeding the tightening torque of 200 Nm (PCH080) or 300Nm (PCH130, PCH160 and PCH210).

Important: It is strictly prohibited to supply gas to the circuit with pressure higher than 60 mbar. Such pressures could cause the valve to break.

If pressure are higher than 60 mbar, a pressure reducer must be installed at least 10 m away and no pressure stabiliser must be fitted between the pressure reducer and the heater, but leaving the gas filter.

If the burner is not going to be used over a prolonged period the gas supply valve must be closed.

Gas type	Gas settings		PCH	1080		1130 CH65)		1160 CH80)		H210 CH105)
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
	Air supply pressure	mbar		20 [min 17-max 25]						
	Ø pilot nozzle	mm	0,7							
_	Gas consumption (15°C-1013mbar)	m3/h	1,74	8,68	2 x 1,31	2 x 6,88	2 x 1,74	2 x 8,68	2 x 2,22	2 x 10,58
G20 Cat. E-H	Carbon dioxide - CO ₂ content	%	8,7	9,1	8,7	9,1	8,7	9,1	8,5	9,1
out. E m	Fumes temperature	°C	26,5	70	31	86	26,5	70	28	80
	Fume mass flow rate (max.)	kg/h	1:	35	2 x	107	2 x	135	2 x	165
Gas butterfly valve		mm	12	2,2	11	1,0	12	2,2	1:	5,8
	Air supply pressure	mbar	25 [min 17-max 30] (20 for Germany)							
	Ø pilot nozzle	mm	0,7 (0,75 for Germany)							
	Gas consumption (15°C-1013mbar)	m3/h	2,02	10,1	2 x 1,53	2 x 8,00	2 x 2,02	2 x 10,1	2 x 2,21	2 x 12,30
	Carbon dioxide - CO ₂ content	%	8,6	8,9	8,8	9,2	8,6	8,9	8,8	9,0
	Fumes temperature	°C	26	70	31	86	26	70	28	80
	Fume mass flow rate (max.)	kg/h								
	Gas butterfly valve	mm	Not necessary							
	Air supply pressure	mbar			30 [min 2	5-max 35] - 5	50 [min 42,5-	max 57,5]		
	Ø pilot nozzle	mm				0,	51			
	Gas consumption (15°C-1013mbar)	m3/h	1,49	6,80	2 x 1,03	2 x 5,39	2 x 1,49	2 x 6,80	2 x 1,70	2 x 8,30
G30 Cat. 3B-P	Carbon dioxide - CO ₂ content	%	10,1	10,3	10,7	11,3	10,1	10,3	10,4	10,6
out. ob i	Fumes temperature	°C	26,5	70	31	86	26,5	70	28	80
	Fume mass flow rate (max.)	kg/h			·	-	-			
	Gas butterfly valve	mm	7	,0	6	,5	7	,0	9	,3
	Air supply pressure	mbar		30 [mii	n 25-max 35]	- 37 [min 25-	max 45] - 50	[min 42,5-m	ax 57,5]	
	Ø pilot nozzle	mm				0,	51			
	Gas consumption (15°C-1013mbar)	m3/h	1,34	6,70	2 x 1,01	2 x 5,31	2 x 1,34	2 x 6,70	2 x 1,47	2 x 8,18
G31 Cat. 3P	Carbon dioxide - CO ₂ content	%	9,3	9,6	9,4	9,6	9,3	9,6	9,5	9,8
001.01	Fumes temperature	٥C	26,5	70	31	86	26,5	70	28	80
	Fume mass flow rate (max.)	kg/h	1(07	2 x	. 84	2 x 107		2 x	130
	Gas butterfly valve	mm	7	,0	6	,5	7	,0	9	,3

Gas settings data for GAS G25.3 - Cat. K (Netherlands), G25.1 - Cat. S (Hungary), G2.350 - Cat. Ls (Poland) and G27 - Cat. Lw [ex GZ41.5] (Poland) can be found in the manufacturer's installation and maintenance manual (APENGROUP), supplied with the unit.

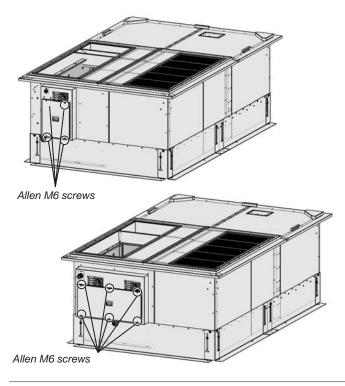
12 - FACTORY OPTIONS AND ACCESSORIES

Country table - gas category:

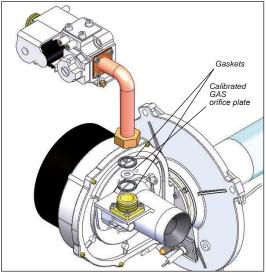
Country	Category	Gas	Pressure (mbar)	Gas	Pressure (mbar)
Austria, Switzerland	II2H3B/P	G20	20	G30/G31	50
Belgium<70kW	I2E(S)B,I3P	G20/G25	20/25	G31	37
Belgium>70kW	I2E(R)B,I3P	G20/G25	20/25	G31	37
Germany	II2ELL3B/P	G20/G25	20	G30/G31	50
Denmark, Finland, Greece, Sweden, Norway, Italy, Czech Rep., Estonia, Lithuania, Slovenia, Albania, Macedonia, Bulgaria, Romania, Croatia, Turkey, Azerbaijan	II2H3B/P	G20	20	G30/G31	30
Spain, United Kingdom, Ireland, Portugal, Slovakia	II2H3P	G20	20	G31	37
France	II2Esi3P	G20/G25	20/25	G31	37
Luxembourg	II2E3P	G20/G25	20	G31	37/50
Netherlands	II2EK3B/P	G20/G25.3	20/25	G30/G31	30
Hungary	II2HS3B/P	G20/G25.1	25	G30/G31	30
Cyprus, Malta	I3B/P			G30/G31	30
Latvia	I2H	G20	20		
Iceland	I3P			G31	37
Poland	II2ELwLs- 3B/P	G20/G27/ G2.350 (*)	20/13	G30/G31	37
Russia	II2H3B/P	G20	20	G30/G31	30

(*) Consult the available burners with G2.350.

Conversion of burner gas type


Conversion to LPG

The gas burner is supplied already set for natural gas and with the kit for conversion to LPG, including: calibrated gas orifice plate; pilot nozzle; adhesive plate "Equipment converted...".


The kit is not supplied in countries where conversion is prohibited.

To convert the unit, follow these instructions:

• disconnect from power supply;

- access the inside of the burner module by removing the 4 Allen M6 screws that secure the front panel;
- between the gas pipe and the Venturi, replace the gas orifice plate fitted (natural gas) with the one supplied with the kit (for LPG);
- replace the pilot nozzle (natural gas) with the one in the kit (LPG);
- restore power supply and set the heater up for ignition;
- while the start-up electrode is sparking, make sure there are no gas leaks.

When the burner is lit and working at maximum capacity, verify that:

- the valve intake pressure corresponds to the value required for the type of gas that you are using;
- the combustion analysis procedure is performed as described in section "Analysis of combustion";
- the level of CO₂ is within the limits indicated for the type of gas being used (tables in Section "GAS connection"). If a different value is detected, change it by turning the adjustment screw: screwing it down decreases the CO₂ level, loosening it increases the level.

Note: The heater with LPG is set up for G31 gas. If the unit runs on G30 instead, it is necessary to verify and possibly adjust settings for CO₂ as shown in the table in section "Gas connection".

• that the gas valve Venturi pipe connector does not leak.

After converting and regulating the unit, replace the nameplate indicating "Equipment regulated for natural gas" with the one in the kit that indicates "Equipment converted ...".

Conversion to gas G25 - G25.1 - G25.3 - G27

Conversion for gasses from G20 to G25 or G25.1 or G25.3 or G27 is allowed only in countries of category II2ELL3B/P [Germany], II2Esi3P [France], II2E3P [Luxembourg] and category II2HS3B/P [Hungary] and category II2ELwLs3B/P [Poland].

For countries in category II2EK3B/P [Netherlands] the unit is supplied already set up and regulated for G20 or G25.3.

Conversion from one type of gas to another can only be performed by authorised service centres.

Note: The conversion kit to G25 , G25.1 and G27 is only supplied on request. The conversion kit to G25 is included in the standard supply for France, Germany and Luxembourg.

Conversion to G25 and/or G25.1, G25.3, G27 where possible, consists in:

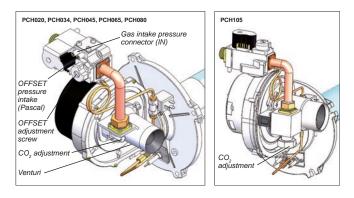
 insertion of orifice plate (according to the gas type and the equipment model).

After the conversion, relight the burner and follow the steps explained for the conversion to LPG.

Finally, stick the nameplate "Equipment converted for gas G25...."

Analysis of combustion

Wait until the heater is switched on. Check that the heater is running at maximum power by using one of the two methods below:

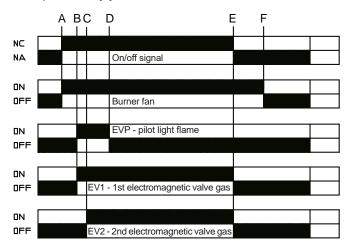

- check that Tin input signal is equal to 10 V;
- from the LCD display, access the REG menu, then use the Hi and Lo controls to force operation at maximum or minimum output (refer to the section "Control of the gas burner").

At maximum output, check again that the input pressure in the valve corresponds to the value required; adjust if necessary.

Perform the combustion analysis to verify that the level of CO_2 corresponds to the figures in the table in Section "Gas connection".

If the measured value is different, turn the adjustment screw on the Venturi pipe. Loosening the screw will increase the CO_2 level, screwing it down will decrease the level.

Set the heater to minimum output, and verify that the level of CO_2 corresponds to the figures in the tables in section "Gas connection". If the values do not match, screw or loosen the offset screw respectively to increase or decrease the CO_2 level and repeat the procedure.



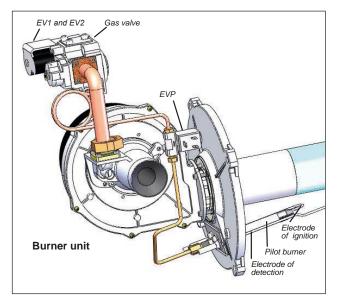
Operating cycle of the burner

• Burner operation:

When the unit demands heat, the modulation PCB will start the operation cycle. It authorises the flame monitoring equipment to start. The equipment will immediately start ventilating burner [A] and prewashing the combustion chamber for a preset length of time.

After the prewash, the ignition phase starts: the equipment opens solenoid EV1 and, in parallel, solenoid EVP which supplies gas to the pilot burner [B].

After detecting the pilot flame, the equipment opens the main gas valve EV2 [C] to supply gas to the main burner.


After a time of dual functioning of the two burners (pilot and main), the modulation PCB removes gas from the EVP valve and turns off the pilot burner [D].

A single electrode detects the flame both for the pilot burner and the main burner.

The ignition program lights the burner to obtain an intermediate level heat production capacity, which corresponds to about 30% of the maximum capacity. Once the flame is stabilised for a few seconds at ignition power, the burner begins to modulate its output to reach maximum output, if required, in a variable length of time programmed into the modulation PCB.

During operation, the modulation PCB will regulate the power output of the burner proportionally to the voltage (0-10 Vdc) in the terminals.

If there are multiple power modules, the 0/10 Vdc signal could turn off one or more modules in cascade.

• Turning off the burner:

When the demand for heating ceases, signalled by a voltage lower than the preset limit (0.5 Vdc), the modulation PCB turns off the burner [E]; the fan continues to purge the combustion chamber, post-wash, for a preset length of time [F].

Opening a contact (see electrical diagram) always causes the burner to stop without causing a fault.

Safety thermostats:

A safety thermostat with automatic reset and positive safety setting is installed on the heater module. The breaking of the sensitive element corresponds to a safety intervention.

When the thermostat intervenes, through the flame monitoring equipment, the burner stops and the flame equipment is blocked.

The block of the flame equipment, caused by the safety thermostat, is signalled on the LCD display of the CPU PCB on the machine with F20. The block is classified as "non-volatile" and requires a manual reset.

Near the safety thermostat, there is an NTC1 probe set to the value of the ST1 parameter which reduced the burner's heat output independently from the incoming 0/10 Vdc signal when is reaches the set point. The probe monitors the ratio of heat capacity / cooling air flow. It is not advisable to change the ST1 value.

• Fxx faults:

The modulation PCB can distinguish between 30 different types of faults. This ensures accurate diagnostics. Also, codes and possible causes of faults are listed in this manual.

For more serious faults that require a manual reset, use the LCD display to reset the CPU PCB on the machine by pressing the arrows at the same time.

• Air/gas premixing operation:

The PCH heater is fitted with a burner that completely premixes air and gas. The air/gas mixing occurs inside the impeller on the motor-fan.

The air taken into the impeller through the venturi tube, calibrated, creates a vacuum. The vacuum in the venturi is rebalanced by the gas valve, which is pneumatically controlled.

The air pressure - gas pressure ratio is 1:1. This ratio can be corrected by turning the offset adjustment screw (on the gas valve). The heater is supplied with the offset regulated and the screw sealed.

A second adjustment can be done with the screw on the venturi, which regulates the value of maximum gas capacity and determines the amount of carbon dioxide (CO_2) in the flue gases.

This adjustment is also made at the factory. The screw is not sealed to permit conversion to another type of gas, if desired.

The modulation PCB, mounted on the heater, manages the motor rotation (in c.c.) depending on the heating capacity required by the environment. Varying the rotation speed of the motor changes the air flow capacity and therefore also the gas flow capacity. Minimum and maximum rotation values of the fan are programmed into the PCB and cannot be modified by the user or installer.

Control of the gas burner

Important: All the connections to be established by the client are featured on the wiring diagram included with the unit.

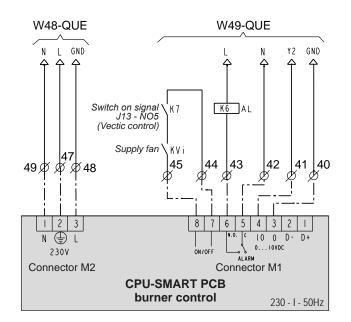
• Unit electronic control:

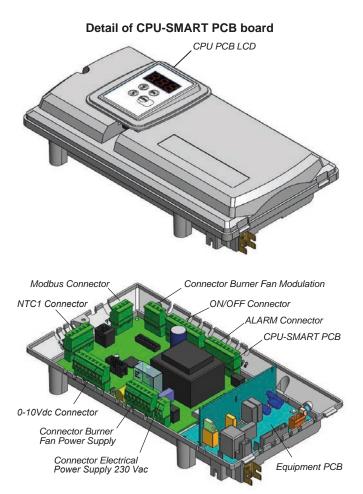
The Vectic control has a proportional output 0/10V (Y2) where a natural gas or propane gas proportional actuator can be connected. The burner connection is managed by the control, in HEATING mode, through an ON/OFF signal of the digital output NO5

It is possible to select three operating modes for the burner:

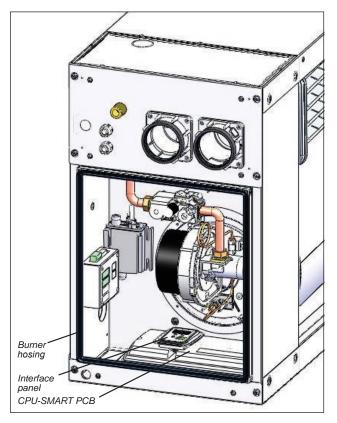
- Operation of the burner as one or two electrical heater stages (both option not compatible).
- Operation instead of the compressors.
- Operation instead of the compressors if the outdoor temperature is lower than the value set (5°C by default).

When the return temperature drops below the value set for the burner connection the burner will start to operate. The control of the power is carried out in accordance with the temperatures of the supply air and return air. The control compares both temperatures. If the supply temperature is excessively high, the control limits the power supplied by the burner despite the demand. This comparison avoids the stratification of the hot air masses and keeps the supply temperature below the safety value (55°C by default), which stops the burner.


Moreover, the control compares the supply temperature and the ambient temperature to improve the feeling of thermal comfort.


The gas burner integrates its own control. The Vectic control only receives a safety signal from the burner in the event of failure (digital input DI5). This signal only indicates the failure.

Burner control:


The gas burner integrates its own CPU-SMART PCB board that manages the operation and the safety devices.

The cables "W48-QUE" and "W49-QUE" with the wires required for the connection of the CPU-SMART PCB board with the PJ unit must be connected to the connection box "BOX8-QUE" that is located inside of the PJ unit (please consult the section "Electrical connection of the burner".

By removing the access door to the inside of the burner, the CPU-SMART PCB can be seen :

• Burner protection for low outdoor temperatures (optional):

With outdoor temperatures below -14°C WB, a protection kit for low temperature is available. The kit is composed of a 55W electrical heater and a NTC probe.

The burner control manages the electrical

heater to maintain a constant temperature

inside the burner housing higher than +

• Interface panel:

1° C.

Each PCH heater is fitted as standard with a multifunction LCD panel located inside the burner housing, which is used to control, configure and diagnose all operating parameters of the equipment.

The instrument panel is fitted with a red 3 digit LCD display and four function keys: \uparrow , \downarrow , ESC and ENTER; the display allows the user to display the heater operating mode and its faults. It allows our service centre to change the main operating parameters.

Changing parameters requires a password.

- Viewing the burner status:

The machine status is shown on the display by the following wordings:

rdy: the machine is on without burner flame; it is waiting for the ON control and/or the heat demand from the room temperature monitoring system.

On: the machine is on with burner flame or is in the ignition phase.

Off: the machine is turned off by the control on the LCD. Any heat demands will be ignored. To light the burner, the LCD must show "operation ON";

Fxx: Fault detected.

During normal operation, the display will show the writing **On** if the burner is on; **rdy** when the heater is being switched off or the room temperature has been reached.

Air when the EST function in the menu FUN was selected by mistake; modify FUN to ON or OFF.

In the event of communication problems between the CPU-SMART PCB of the burner and the LCD panel, the word CPU will flash on the display if the problem is caused by the CPU; three flashing dots will be displayed if the problem is caused by the display PCB. If needs be, check that the display and the PCB are correctly connected and that the small cable RJ11 is securely held in the connector.

- Navegating the menu:

The menu has three levels. The fisrt is visible without entering a password, the second and third require using second and third level passwords.

Use the arrows to scroll the menus: \uparrow (up arrow) and \downarrow (down arrow). Press ENTER to select the menu, and again to select the parameter. Change the parameter with the arrows and confirm the change by pressing ENTER. To exit the parameter or menu, press ESC. If you exit the programming function, after about 10 minutes the program will exit the menu and go back to the "machine status" view.

To change the parameter, press the arrow keys: pressing \uparrow (up arrow) increases the parameter by 1, pressing \downarrow (down arrow) reduces it by 1. Pressing both arrow keys for at least three seconds increases the parameter scroll speed.

To confirm a change in parameters, press ENTER for at least 3 seconds. The change in the parameter is signalled by a flash of the display.

All submenus scroll from the bottom towards the top, and they start over when the end of the menu is reached.

- Entering the password:
 - From the initial screen (ON/OFF/rdy/FXX) use the ↑ (arrow up) and ↓ (arrow down) keys to reach the ABI function; hold down the ENTER key for 3 seconds;
 - Set the password inside the menu ABI and confirm it with ENTER; hold it down per approximately 3 seconds (the flashing display will show that the parameter has been stored);
 - Press ESC and, by using the ↑ and ↓ arrow keys, return to the initial screen (ON/OFF/rdy/FXX); press ENTER for 3 seconds;
 - Use the ↑ and ↓ arrow keys to reach the desired menu item (Flt, I/O, SET, PAR);
 - Press ENTER to access the function;
 - Use the ↑ and ↓ arrow keys to select the parameters to be displayed and edited;
 - · Press ENTER to display the parameter value;

12 - FACTORY OPTIONS AND ACCESSORIES

- Use the \uparrow and \downarrow arrow keys to edit the value (only SET and PAR);
- Press ENTER to confirm the change made;
- To exit the parameter and the menu, press ESC until the initial screen is displayed (ON/OFF/rdy/FXX).
- First level menu:

The following menus are present on the first level:

machine status gives information about the operation of the PCH (ex. rdy, ON, etc.);

FUN from FUN it is possible to select the function ON, OFF or EST (do not select EST);

REG this menu allows the user to force the burner to the minimum or the maximum for combustion tests; it automatically returns to the previous position at the end of the preset time (10 minutes);

 $\ensuremath{\text{TIN}}$ allows the user to read the value of the 0/10 Vdc signal coming into the PCH;

Pra not used;

ABI used to enter the PWD to access menus of second and third level.

Entering the password 001 will provide access to the second level and make the Set Point and I/O menus available.

Entering the second password grants access to third level. This password must be requested directly to CIAT technical service.

• Reset:

The modulation PCB allows the operator to identify more than thirty different causes of faults. This makes it possible to manage each event very precisely.

To reset the faults, press both arrows simultaneously for a few seconds.

If ignition fails, the flame monitoring system reattempts ignition four times. After four failed attempts, it will block and display the code F10.

The faults code and cause of the faults is shown in the FAULT table in next Section.

If the flame monitoring equipment is blocked (codes from F10 to F20), it is also possible to unblock it by using the button on the equipment itself. This block is shown by a LED that lights up on the equipment.

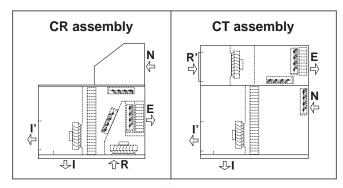
Warning: The flame monitoring equipment memorises the number of manual resets that are performed during its lifetime. In case of five resets performed in a period of 15 minutes, without a flame being ignited and detected, the equipment will go into a "timed" lockout (F13). In this case, it is required to wait another 15 minutes before resetting again. Press the reset button on the equipment to immediately reset this block condition.

Note: should the safety thermostat (STB) be open before starting the start-up cycle (this could be caused, for example, by low temperatures), the pilot light equipment will be kept in "standby" and block F15 will be shown.

Analysis of Blocks - Faults

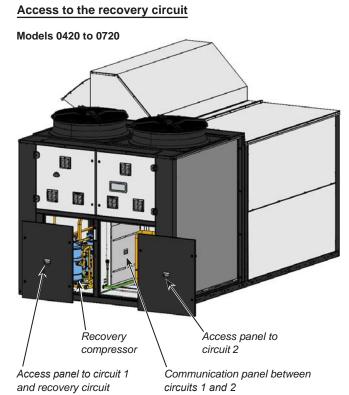
The CPU-SMART manages two types of blocks:

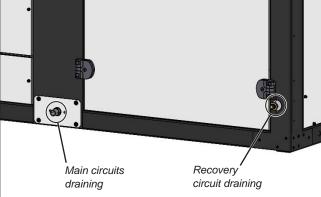
- preventive, it warns the client that the PCH heater requires maintenance;
- operational, it stops the PCH heater for safety reasons or to ensure its correct operation.


Some operational blocks require manual resets; others reset themselves when the problem that caused them is solved.

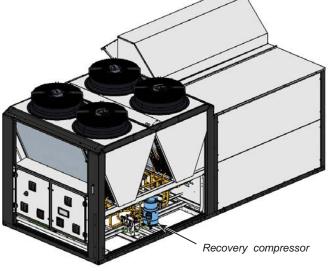
Below is a complete list of faults, possible causes and possible remedies.

Fault	Description	Cause	Remedy
Blocks	caused by Flame - Depend	ent on the TER equipment	
F10	Failure to ignite flame after 4 attempts performed by the equipment	Phase and neutral reversed.Earth wire not connected.	
F11	Ill-timed flame	 Phase-phase connection without neutral. 	
F12	Failure of ignition; not visible. The count, displayed in the historical list, indicates whether the heater has had problems with ignition	 Start-up electrode failed or badly positioned Detection electrode failed or badly positioned Detection electrode that moves or disperses to the earthing system when hot. Low CO2 value 	Manual reset
F13	The TER equipment doesn't accept the reset command from CPU- SMART	TER has finished its 5 reset attempts in the period of 15 minutes.	Wait 15 min. or use reset button on equipment
F14	Lack of communication between TER equipment and CPU for more than 60s	TER equipment or CPU- SMART PCB broken	Auto-reset
F15	The CPU-SMART PCB sent the ignition signal to the equipment. After 300	safety thermostat blocking start up	Check contact closing
	seconds, the equipment has not yet lit the flame	TER equipment broken	Manual reset
F16	Generic equipment block	TER equipment broken	Manual reset
F17	Internal malfunction of TER equipment that does not accept reset command from CPU-SMART	TER equipment broken	Manual reset of equipment
Blocks	caused by temperature (saf	ety blocks)	
F20	Activation of safety thermostat STB	Excess air temperature due to lack of air circulation Safety thermostat broken or not connected	Manual reset
Block	FAN - burner ventilator		
F30	Fan speed too low in start up phase - VAG		Manual reset
F31	Fan speed too high in start up phase - VAG	Burner fan broken.	Manual reset
F32	Fan speed, during operation, outside minimum and maximum set parameters - VAG	FAN electrical cables broken or not connected	Manual reset, autoreset after 5 min.
NTC p	robes broken or missing		
F41	Probe NTC1 error, air intake temperature	Absence of signal from probe or broken probe	Auto-reset
Over-t	emperature		
F51	The temperature of the air intake probe NTC1>TH1	 The minimum heat power of the PCH heater module is over-sized compared to the power output required by the environment. Check the TH1 param air intake set point. 	Auto-reset if NTC1< TH1-15
Lack c	f voltage		
F75	No voltage during operation cycle (excluding stand-by); the fault is not visible on remote control but only counted.	No voltage during operation	Auto-reset
Interna	al malfunction of CPU-SMAR	Т РСВ	
F00	Internal malfunction of CPU-SMART PCB	Perform a manual reset of the PCB; replace the CPUSMART if the problem persists	Manual reset


persists

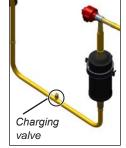

12.10 Cooling recovery circuit (CR and CT assemblies)

Thermodynamic circuit dedicated to the recovery of the extracted air energy, with independent and proportional control, adapted to the air renewal requirements in order to raise the COP and EER of the unit.


- The circuit is composed of:
- Return EC plug-fan.
- Air circuit comprised of coils with copper pipes and aluminium fins.
- Electronic expansion valve.
- Hermetic scroll-type compressor assembled over antivibration mounts.
- Crankcase heater.
- Four-way cycle reversing valve.
- Anti-acid dehydrator filter.
- High and low pressure transducers.
- Condensates drain pan, with a 1/2" M gas threaded plastic drain connection.

Characteristics of the recovery circuit

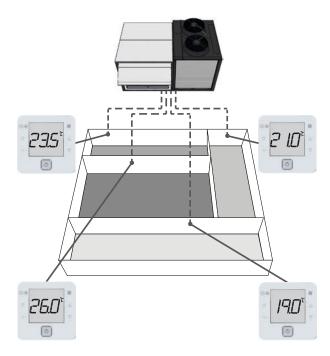
PJ	0420 to 0500	0560 to 0620	0680 to 0720	0760 to 0960	1050 to 1200	
Compressor type			Scroll			
No. of compressor	1 / 1					
Max. absorbed current	(A)	13,7	18,7	21,7	24,0	27,5
Oil type Copeland 3MAF 32cST, Danfo ICI Emkarate RL 32CF, Mobil						
Volume of oil	(I)	3,0	3,3	3,3	3,3	3,6



Adjusting the refrigerant charge

Models 0760 to 1200

The charging valve (schrader type) must be used to adjust the refrigerant charge of the recovery circuit when this one is lower than required. It's placed on the liquid line before the filter drier.


In models 0420 to 0720, the charging valve can be accessed via the compressors box on circuit 2, removing the communication panel between both circuits.

12.11 Zoning of the air flow

This option allows the management of the air flow of the unit to condition up to 4 different zones with a minimum air flow of 35% (all of them in same operating mode: heating or cooling). This function allows to adapt the indoor air flow to the installation requirements.

Note: zoning is only possible with plug-fans.

Regulation gives the control signal to the dampers installed in each zone (dampers and servomotors for those dampers not supplied). The unit modifies the air flow and capacity depending on information coming from sensors in each zone and considering active zones in each moment.

The option includes 4 zone terminals (one for each zone), the additional control board supplied in an independent box to be connected with the 4 terminals, the unit board and also to the servomotors that control dampers in each zone (dampers and servos not supplied).

The temperature information for each zone is coming from temperature sensor integrated inside each zone terminal. It is not needed to install any extra ambient sensor.

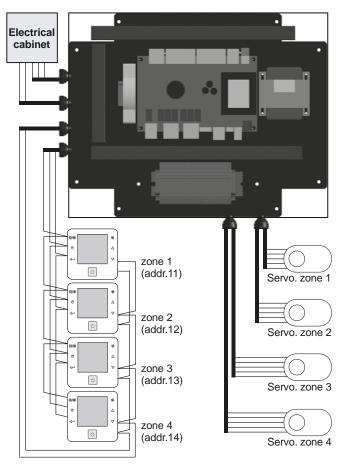
Note: There is a new option with **constant supply pressure** that extends the possibilities for multi-zone management. Available upon request.

Zone terminals

These terminals are the same as the TCO user's terminal (optional).

The main screen shows the ambient temperature, current operating mode of the unit, time and day of the week.

The following screen shows the temperature setpoint for this zone in the current operating mode.


This screen can also show the zone that corresponds to the terminal, the regulation band associated with the temperature setpoint, the active alarms by means of codes and the delay set for the opening/ closing of the damper.

These terminals also allow the schedule programming.

With the air zoning, the VecticGD terminal it also provides information on setpoints for each zone.

Zoning box connections

The control board of the air zoning is assembled in a separate box from the PJ unit. This board is connected in series on the Field-Bus of the main board of the Vectic control, placed on the electrical cabinet of the unit.

The installer must carry out the following connections:

- Connection of the zone terminals:
 - Power supply (the same as the control board) at 230Vac 50/60Hz (L&N): 2 wires (section 0.5 at 1.5 mm²).
 - Communication (RX+/TX+ & RX-/TX-): shielded cable type AWG20 or AWG22 with 1 braided pair + drainwire + shielding (e.g., model BELDEN 7703NH).

Zone terminals can be installed at a maximum distance of 100 metres from the zoning box.

These terminals are configured with their corresponding address in the factory. In the unlikely event of a communications failure the screen will display "Cn". Please make sure to check connections and the firmware version.

- Connection of the servomotors for the supply dampers:
 - 5 wires (section 0.5 at 1.5 mm²), supply 24Vac.
- Connection to the electrical cabinet of the PJ unit:
 - Power supply: 230Vac ((L&N): 2 wires (section 0.5 at 1.5 mm²).
 - Communication (RX+/TX+ & RX-/TX-): shielded cable type AWG20 or AWG22 with 1 braided pair + drainwire + shielding (e.g., model BELDEN 7703NH).

Note: Please refer to the wiring diagram provided with the unit and the Vectic control manual to get more detailed information about the wiring.

13.1 Checks prior to commissioning

- It is advisable to make a complete sketch of the installation including the location of the unit and all the components used. This will be very helpful for maintenance and repairs to the installation.
- The following must be verified:
 - That the electrical power supply remains constant and that it corresponds to that featured on the unit name plate.
 - That the electric installation has been carried out according to the electric wiring diagram provided with the unit (consult the chapter on "Electrical connection").
 - The correct connection of the sensors supplied with the unit (consult the chapter on "Electrical connection").
 - That they are no cables close to heat sources.
- Once the above verifications have been carried out, the control circuit is supplied with voltage by the automatic control switch.

Attention: the compressor crankcase heater must be put under voltage for 24 hours before starting the compressor.

WICHTIG: WIEDERBEHEIZUNG DER OLWANNE

BEIDER ERSTEN INBETRIEBSETRUNZ ORDER NACH EINER LANGEN STROMUNTER-BRECHUNG BRINGEN SIE DIE MASCHINE UNTER SPANNUNG 24 STRUNDERLANG BEVOR SIE DEN(DIE) KOMPRESSOR(EN) EINSCHALTEN KOENNEN.

IMPORTANT: CRANKCASE HEATING FOR THE FIRSTSTART OR AFTER ALONG TIME OUT OF VOLTAGE PUT THE MACHINE ON LIVE 24 HOURS BEFORE TO ALLOW THE COMPRESSOR(S) STARTING

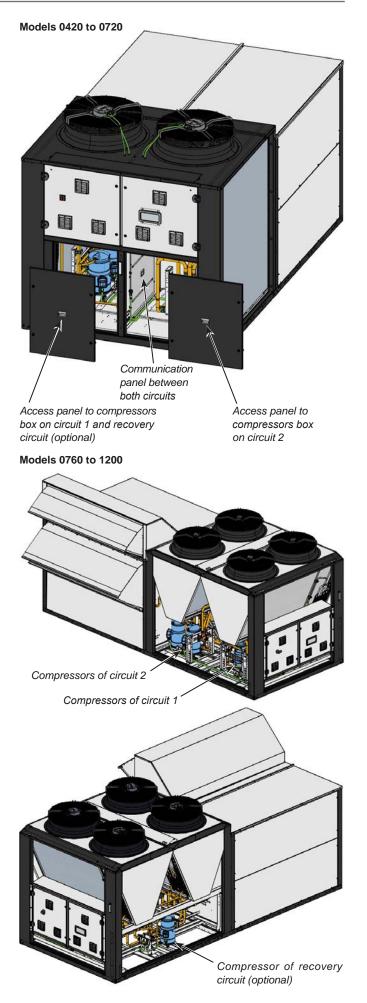
IMPORTANT: SURCHAUFFE CARTER D'HUILE AU PREMIER DÉMARRAGE OU APRÈS UNE ABSCENCE DE COURANT PROLONGÉE, METTRE LA MACHINE SOUS TENSION 24 HEURES AVANT D'AUTORISER LE DÉMARRAGE DU(DES) COMPRESSEUR(S).

IMPORTANTE: RISCALDARE IL CARTER DELL'OLIO

AL PRIMO AVVIAMENTO U DOPO UNA INTERRUZIONE PROLUNGATA DELLA ALIMENTAZIONE ELETTRICA, LASCIARE LA MACCINA SOTTO TENSIONE PER 24 ORE PRIMA DI AUTORIZZARE L'AVVIAMENTO DEL(DEI) COMPRESSORE(I).

IMPORTANTE: RECALENTAMIENTO DE ACEITE DEL CÁRTER

ANTES DEL PRIMER ARRANQUE O DESPUÉS DE UNA AUSENCIA DE CORRIENTE POR UN LARGO PERIODO DE TIEMPO, CONVIENE QUE LA UNIDAD ESTÉ CONECTADA UN MÍNIMO DE 24 HORAS.

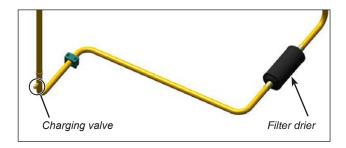

V220084

Important: As a safety feature to ensure heating of the crankcase heater, if there is a power cut lasting over 2 hours, the compressors will be locked. The unit must be powered for 8 hours to unlock them. The VecticGD terminal unit display will shows the time remaining until they can be unlocked.

 All the units are equipped with scroll type compressors and a phase control relay. Verify that they rotate in the correct sense and, if not, reverse the power wires.

• Check the unit operation and verify the safety devices.

Control of the refrigerant charge


 Each unit is shipped with an exact charge of refrigerant for proper operation. Refrigerants available are: R-410A or R-454B.
 Important: the type of refrigerant included in the unit can be consulted

on the name plate, see section 4.3.

• To make sure that the unit is filled with the correct charge of refrigerant, check the values of overheating and subcooling, circuit by circuit, with the system running at full capacity.

If the refrigerant charge is lower than required, the suction pressure will drop and overheating on the compressor inlets will be high. This can cause an interruption in operation due to activation of the refrigerant charge safety device.

To adjust the refrigerant charge, each circuit has a schrader-type valve in the liquid line, before the filter drier.

• Verify the absence of any leaks of the refrigerant.

In case of a leak:

 Completely drain the refrigerant charge using a specific recovery machine for the type of refrigerant included in the unit (R-410A or R-454B). Repair the leak.

Important: Always follow the recommendations given in section 2.2 "Safety standards for refrigerant".

- Next, reload the refrigerant into the unit according to charge data provided in a table of the chapter on "Maintenance" and in the unit's name plate.
- Add the refrigerant via the charging valve, located in the liquid line, using the appropriate equipment and tools, with the compressors stopped, monitoring the pressures to control any anomaly.

13.2 Possible problems at commissioning

All indications given in this manual must be respected and complied with to guarantee a correct operation of the units.

Next, several possible operation problems are stated which could happen if the conditions of the commissioning are not appropriate.

- Air flow lack: very high differences between inlet and outlet temperatures, originated by a high pressure drop in the ducts, or by other causes that impede the correct circulation.
- Air recirculation in the unit, originated by some obstacle in the air aspiration or outlet.
- Noise problems because of excessive air flow in the grille.
- Water overflowing to the pan problems, originated by an excessive flow, an incorrect siphon installation or because a defective unit level.
- Refrigerant circuit humidity problem, because of an incorrect vacuum realization.

13.3 Operational checks

Check the unit operation by verifying the electronic control and the safety devices.

It is also recommendable to create a report, taking note of the date, which includes the following information:

- the nominal voltage,
- current absorbed by the compressors, fans and other electrical components,
- significant temperatures in the cooling circuit (see attached table),
- other aspects considered interesting such as alarms detected by the electronic control of the unit.

The recording of these parameters whilst the unit is running allows controlling the installation performance and it is the best possible way to avoid breakdowns since the analysis of these data makes early detection of anomalies possible or the provision of the necessary means available to ensure that they do not take place.

Operating readings

Cooling MODE						
	Suction pressure	bar				
Commence	Suction temperature (1)	°C				
Compressor	Condensation pressure	bar				
	Condensation temperature (2)	°C				
	Gas inlet temperature	°C				
	Liquid outlet temperature (3)	°C				
Air condenser	Air inlet temperature	°C				
contaction	Outdoor temperature	°C				
	Air outlet temperature	°C				
	Air inlet temperature	°C				
Air	Air outlet temperature	°C				
evaporator	Liquid inlet temperature	°C				
	Evaporation outlet temperature (4)	°C				
Subcooling (2) - (3)		°C				
Overheating (4	4) - (1)	°C				

Heating MOD	Heating MODE						
	Suction pressure	bar					
Compressor	Suction temperature (1)	°C					
Compressor	Condensation pressure	bar					
	Condensation temperature (2)	°C					
	Liquid inlet temperature	٥C					
	Gas outlet temperature (4)	°C					
Air evaporator	Air inlet temperature	°C					
orapolator	Outdoor temperature	٥C					
	Air outlet temperature	°C					
	Air inlet temperature	°C					
Air	Air outlet temperature	°C					
condenser	Gas inlet temperature	°C					
	Liquid outlet temperature (3)	°C					
Subcooling (2)	- (3)	٥C					
Overheating (4	4) - (1)	٥C					

14.1 General recommendations

To ensure optimal efficiency and reliability of the equipment and all its functions, we recommend taking out a maintenance contract with the local organisation set up by your manufacturer. This contract will include regular inspections by the manufacturer's Service specialists so that any malfunction is detected and corrected quickly, ensuring that no serious damage can occur. The manufacturer's service maintenance contract is the best way to ensure the maximum operating life for your equipment and, through the expertise of manufacturer's qualified personnel, provides the ideal way to manage your system energy consumption effectively.

The refrigeration equipment must be serviced by professionals; however, routine checks may be carried out locally by specially trained technicians. See standard EN 378-4.

Note: Any deviation from or failure to comply with these maintenance criteria will render the guarantee conditions for the refrigeration unit null and void, and will release the manufacturer from its liability.

All refrigerant charging, removal and draining operations must be carried out by a qualified technician and with the correct equipment for the unit. Any inappropriate handling can lead to uncontrolled fluid or pressure leaks.

Before performing any work on the machine ensure it is de-energised. Cut off the main power supply with the door switch located in the electrical cabinet.

If a refrigerant circuit is opened, it must be evacuated, recharged and tested for leaks. Before any operation on a refrigerant circuit, it is necessary to evacuate the refrigerant charge using a charge transfer unit.

Simple preventive maintenance will allow you to get the best performance from your rooftop unit:

- Optimisation of energy performance,
- Reduced electricity consumption.
- Prevention of accidental component failure.
- Prevention of major time-consuming and costly work.
- Protection of the environment.

The AFNOR NF X 60 010 standard can serve as a reference, as it defines different maintenance levels for refrigeration units.

14.2 Servicing

Level 1 maintenance

These simple procedures can be carried out by the user:

- Visual inspection for oil traces (sign of a refrigerant leak).
- Clean the air-cooled exchangers (see the dedicated section).
- Check that the protective grilles (optional) are present and in good condition; and that the doors and covers are properly closed.
- Check the unit's alarm report (see the control manual);
- Check for any general signs of deterioration,
- Check the anti-corrosion coatings.

Level 2 maintenance

This level requires specific expertise in electrical, cooling and mechanical systems.

It is possible that this expertise may be available locally; there may be a maintenance service, industrial site or specialist subcontractor in the area.

The frequency of this maintenance level may be monthly or annual, depending on the verification type.

In these cases, the following maintenance operations are recommended: Carry out all level 1 operations, then:

Electrical checks (annual checks):

- At least once a year tighten the electrical connections for the power supply circuits (see tightening torques table).
- Check and tighten all control connections, if required.
- Check the labelling of the system and instruments, re-apply the missing labels if required.
- Remove the dust and clean the interior of the electrical boxes. Be careful not to blow dust or debris into components; use a brush and vacuum wherever possible.
- Clean the insulators and bus bar supports (dust combined with moisture reduces the insulation gaps and increases current leakage between phases and from phase to ground).
- Check the presence, condition and operation of electrical protective devices.
- Check the presence, condition and operation of control components.
- Check that all heaters are operating correctly.
- Replace the fuses every 3 years or every 15000 hours (ageing).
- Check that no water has penetrated into the electrical cabinet.
- On the electrical cabinet, regularly check the cleanliness of the filter media to maintain the correct air flow.

Mechanical checks:

• Check that the mounting bolts for the ventilation sub-assemblies, fans, compressors and electrical cabinet are securely tightened.

Refrigerant circuit checks:

- The unit is subject to F-gas tight regulatory checks.
- Check the unit operating parameters and compare them with the previous values.
- Check the operation of the high-pressure switches. Replace them if there is a fault.
- Check the fouling of the filter driers. Replace them if necessary.
- Keep an up-to-date service booklet specific to the refrigeration unit in question.

Ensure all adequate safety measures are taken for all these operations: use appropriate PPE (personal protective equipment), comply with all industry and local regulations, use common sense.

Level 3 maintenance

Maintenance at this level requires specific skills, qualifications, tools and expertise. Only the manufacturer, his representative or authorised agent are permitted to carry out this work.

This maintenance work relates to the following:

- Replacement of major components (compressor, coil exchanger, etc).
- Operations on the refrigerant circuit (handling refrigerant).
- Modification of factory-set parameters (changes on the Vectic control);
- Movement or disassembly of the refrigeration unit.
- Any operation due to proven lack of maintenance.
- Any operation covered by the warranty.
- One or two leak detection operations per year performed by qualified personnel using a certified leak detector.
- To reduce waste, the refrigerant and the oil must be transferred.
- In accordance with applicable regulations, using methods that limit refrigerant leaks and pressure drops and with materials that are suitable for the products.
- Any leaks detected must be repaired immediately
- The compressor oil that is recovered during maintenance contains refrigerant and must be treated accordingly.
- Pressurised refrigerant must not be vented to the open air.
- If the refrigerating circuit must be opened, cap all openings for a period of up to one day. If open for longer, blanket the circuit with a dry, inert gas (e.g. nitrogen).

14.3 Access to the main components

Caution: Before performing any work on the machine ensure it is de-energised. Verify that the main power to the unit is cut off.

It is mandatory to use all required PPE for work at height. Pay special attention to units with lower supply and/or return.

Important: Whenever maintenance work is carried out on a unit with R-454B refrigerant, an A2L refrigerant detector must be available, regardless of that installed inside the unit.

Compressor

In the case of compressor replacement:

- Disconnect the unit from power supply.
- Completely drain the refrigerant charge using a specific recovery machine for the type of refrigerant included in the unit (R-410A or R-454B).

Important: Always follow the recommendations given in section 2.2 "Safety standards for refrigerant".

- Disconnect electrically the compressor.
- Carefully unsolder the suction and discharge piping.

- The compressor is fixed onto the platform with 4 screws.
- Unscrew the fixings.
- Place the new compressor and check that it has a sufficient oil charge.

Warning: when tightening the compressor screws, please consult the maximum torque that can be applied.

- Solder the suction and discharge piping.
- Connect the compressor in accordance with the wiring diagram.
- Make vacuum and next, reload the gas into the unit according to charge data provided in the table of section "Refrigerant" and in the unit's name plate.

Oil

Oils for refrigeration units do not pose any health risks if they are used in compliance with the precautions for use:

- Avoid unnecessary handling of components lubricated with oil. Use protective creams.
- Oils are flammable and must be stored and handled with care. Disposable rags or cloths used in cleaning must be kept away from open flames and disposed of in the appropriate manner.
- Containers must be stored with their caps on. Avoid using oil from an opened container stored under incorrect conditions.
- Check the oil level and aspect. In case of a colour change, check the oil quality using a contamination test.
- In the case of the presence of acid, water or metallic particles, replace the affected circuit oil, as well as the filter drier.
- If all the oil must be emptied, replace it imperatively with new oil of the same grade as the original oil which has been stored in a hermetically sealed container until its time of use.

The oil type recommended for these units is:

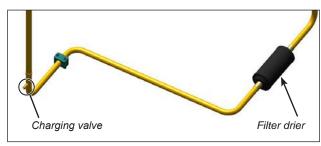
Copeland 3MAF 32cST, Danfoss POE 160SZ, ICI Emkarate RL 32CF, Mobil EAL Artic 22CC.

The following table indicates the required volume:

Main circuits:

RPJ / IPJ	0420	0450	0500	0560	0620	0680
Volume (I)	4 x 3,0	2 x 3,0 + 2 x 3,3	4 x 3,3	4 x 3,3	4 x 3,3	4 x 3,3
RPJ / IPJ	0720	0760	0840	0960	1050	1200
Volume (I)	2 x 3,3 +	2 x 3,3 +	3 x 3,6 +	1 x 3,6 +	4 x 6,1	4 x 6,1

Cooling recovery circuit (optional):


RPJ / IPJ	0420	0450	0500	0560	0620	0680
Volume (I)	3,0	3,0	3,0	3,3	3,3	3,3
RPJ / IPJ	0720	0760	0840	0960	1050	1200
Volume (I)	3,3	3,3	3,3	3,3	3,6	3,6

Filter drier

- The filter function is the preserve the cooling circuit clean and without humidity, neutralizing the acids that can be found in the cooling circuit.
- Measure the difference in the temperature of the pipes at the drier inlet and outlet.
- If necessary, replace.

Refrigerant

These units are supplied with one of these refrigerants:

- **R-410A:** belongs to the A1/A1 group, i.e. with high safety both in the mix and also in the case of a leak.
- **R-454B:** belongs to the A2L group, that is, non-toxic and low flammability.

Caution: with A2L refrigerant, always use an A2L refrigerant detector when near the unit.

Important: the type of refrigerant included in the unit can be consulted on the name plate, see section 4.3.

Note: These units are prepared for the replacement of R-410A refrigerant by R454B on site. The necessary elements for this change are supplied in a kit. All the instructions for carrying out this retrofit are explained in a separate document (NA21692B).

Periodic check of tightness:

Only qualified personnel must perform a periodic leak testing, in accordance with the regulation (EC) **No. 517/2014.**

• The frequency of checks is no longer related to the refrigerant charge but to its global warming potential:

Charge kg x GWP = t CO2e

Carbon dioxide equivalency (t CO2e) is a quantity that describes, for a given mixture and amount of greenhouse gas, the amount in tonnes of CO_2 that would have the same global warming potential (GWP).

 Operators shall ensure that the unit is checked for leaks ad minima according to the following frequency:

	Equivalent charge (kg)			uency nths)
Environ. impact (Equiv. tonnes)	R-410A	R-454B	With detector	Without detector
t CO2e < 5	2,4	10,8	not subject to revision	
t CO2e 5 to 50	2,4	10,8	24	12
t CO2e 50 to 500	23,9	108,5	12	6
t CO2e > 500	239,5	1084,6	6	3

Important: units with A2L refrigerant are always equipped with a leak detector with infrared sensor. Consult the chapter "Safety elements".

• The following table shows the refrigerant charge and CO₂ equivalent tonnes (t CO2e) for each model:

R-410A

Main circuits:

IPJ	0420	0450	0500	0560	0620	0680
Charge (kg)	C1: 17,0 C2: 17,0	C1: 17,0 C2: 17,0	C1: 17,0 C2: 17,0	C1: 18,5 C2: 18,5	C1: 18,5 C2: 18,5	C1: 18,8 C2: 18,8
Environ. impact (t CO2e)	C1: 35,5 C2: 35,5	C1: 35,5 C2: 35,5	C1: 35,5 C2: 35,5	C1: 38,7 C2: 38,7	C1: 38,7 C2: 38,7	C1: 39,2 C2: 38,7
IPJ	0720	0760	0840	0960	1050	1200
IPJ Charge (kg)	0720 C1: 19,0 C2: 19,0	0760 C1: 28,3 C2: 28,3	0840 C1: 29,3 C2: 29,3	C1: 29,3	C1: 37,0	1200 C1: 37,5 C2: 37,5

Cooling recovery circuit (optional):

IPJ	0420	0450	0500	0560	0620	0680
Charge (kg)	C3: 5,3	C3: 5,3	C3: 5,3	C3: 6,4	C3: 6,4	C3: 6,4
Environ. impact (t CO2e)	C3: 11,1	C3: 11,1	C3: 11,1	C3: 13,4	C3: 13,4	C3: 13,4
IPJ	0720	0760	0840	0960	1050	1200
Charge (kg)	C3: 6,4	C3: 7,6	C3: 7,6	C3: 7,6	C3: 11,9	C3: 11,9

R-454B

Main circuits:

RPJ / IPJ	0420	0450	0500	0560	0620	0680
Charge (kg)	C1: 15,5 C2: 15,5	C1: 15,5 C2: 15,5	C1: 15,5 C2: 15,5	C1: 17,0 C2: 17,0	C1: 17,0 C2: 17,0	C1: 17,3 C2: 17,3
Environ. impact (t CO2e)	C1: 7,2 C2: 7,2	C1: 7,2 C2: 7,2	C1: 7,2 C2: 7,2	C1: 7,9 C2: 7,9	C1: 7,9 C2: 7,9	C1: 8,0 C2: 8,0
RPJ / IPJ	0720	0760	0840	0960	1050	1200
RPJ / IPJ Charge (kg)	C1: 17.5	0760 C1: 24,5 C2: 24,5	0840 C1: 25,5 C2: 25,5	0960 C1: 25,5 C2: 25,5	1050 C1: 33,3 C2: 33,3	1200 C1: 33,5 C2: 33,5

Cooling recovery circuit (optional):

RPJ / IPJ	0420	0450	0500	0560	0620	0680
Charge (kg)	C3: 4,8	C3: 4,8	C3: 4,8	C3: 5,8	C3: 5,8	C3: 5,8
Environ. impact (t CO2e)	C3: 2,2	C3: 2,2	C3: 2,2	C3: 2,7	C3: 2,7	C3: 2,7
RPJ / IPJ	0720	0760	0840	0960	1050	1200
Charge (kg)	0720 C3: 5,8	0760 C3: 6,8	0840 C3: 6,8	0960 C3: 6,8	1050 C3: 10,7	1200 C3: 10,7

- A logbook must be established for equipment subject to periodic leak tests (verify the registration requirements under national regulations). It should contain the quantity and the type of fluid present within the installation (added and recovered), the quantity of recycled fluid, regenerated or destroyed, the date and output of the leak test, the designation of the operator and its belonging company, etc. Contact your local dealer or installer if you have any questions.
- All refrigerant charging, removal and draining operations must be carried out by a qualified technician and with the correct equipment for the unit. Any inappropriate handling can lead to uncontrolled fluid or pressure leaks.
- Limit the amounts stored in mechanical rooms. Cylinders and tanks of refrigerant must be handled with care and signs warning users of the related poisoning, fire and explosion hazards must be clearly visible.
- Refrigerant that reaches the end of its life must be collected and recycled in accordance with applicable regulations.

Important: Always follow the recommendations given in section 2.2 "Safety standards for refrigerant".

R-454B refrigerant leak detector (standard)

Due to the A2L category of refrigerant R-454B (lightly flammable), it requires the installation of a refrigerant leak detector. This detector uses infrared instead of semiconductor technology with no need of calibration (self-calibration).

This detector integrates, in a single assembly, housing + electronics + sensor. It is divided into two parts, for easy inspection and sensor replacement.

This detector is installed on a panel next to the supply fans of the indoor circuit. This position ensures the correct reading of the gas concentration in the indoor coil.

The mitigation parameters established in the electronic control in case of refrigerant leakage are:

- Delay time (by default, 180 seconds): Time so that when a warning appears on the sensor it does not become an alarm. After this period the PROTECTION MODE will be activated.
- Concentration of LFL (Lower flammability limit) for alarm (by default, 50%): percentage of the LFL from which the refrigerant leak failure occurs and the unit starts operating in PROTECTION MODE.
- Concentration of LFL for alarm switch-off (by default, 10%): Percentage of LFL below which the refrigerant leak alarm ends and the unit stops operating in PROTECTION MODE.
- Airflow (by default, to 100%): Percentage of the airflow rate of the indoor fans (supply and also return if available) when the unit starts operating in PROTECTION MODE..

The PROTECTION MODE instantly disables the compressors and support elements, activates the indoor fans (supply and also return if available) at 100% of airflow (parameterizable) and opens the fresh and exhaust air dampers at 100% (if they are available). This happens temporarily, as long as the leak occurs or the sensor is held down with failure. If one of these two conditions ceases, the unit will return to the operating mode it had before the leak (ON, OFF, COOLING, HEATING, VENT, etc.) and the warning of protection mode will disappear.

If the unit is connected to a BMS monitoring system, the electronic control is prepared to send an alarm signal in case of leakage detection.

In any case, alarms will be maintained until they are reset from the VecticGD terminal (manual reset).

Note: Refer to the Vectic control brochure to obtain more detailed information on its operation.

R-410A refrigerant leak detector (optional)

The gas detector sensor is a device that signals leaks in refrigerant. This sensor is installed next to the supply fan. In case of alarm, it is reset manually.

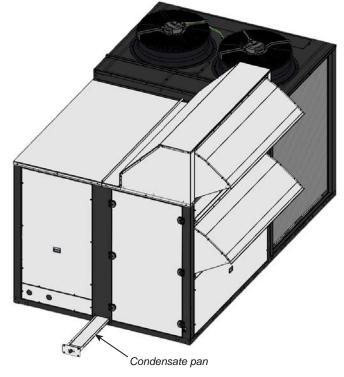
Maintenance:

• Annual testing: it is necessary to carry out testing every year.

• Every 5 years: it is necessary to replace the gas detection element.

Note: Check the documentation attached to the leak detector for taring and calibration testing.

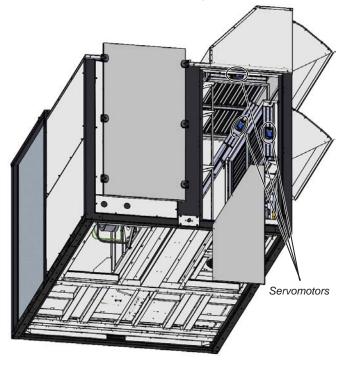
Active recovery (optional)


- A cooling recovery circuit is optionally available for these units (CR and CT assemblies). It is a complete circuit with independent electronic control. The circuit is composed of:
 - Return EC plug-fan.
 - Air circuit comprised of coils with copper pipes and aluminium fins.
 - Electronic expansion valve.
 - Hermetic scroll-type compressor assembled over antivibration mounts.
 - Crankcase heater.
 - Four-way cycle reversing valve.
 - Anti-acid dehydrator filter.
 - High and low pressure transducers.
 - Condensates drain pan.
- The same recommendations for the maintenance of the components of the main circuits must be followed for the components of this circuit.

Condensate drainage pan

• These units are equipped with a condensate drainage pan sloped toward the drain.

Note: This pan is removable for easy cleaning in models 0420 to 0720. It is secured to the unit using 4 M6 Allen screws.


• Check that the condensate pan is sufficiently clean.

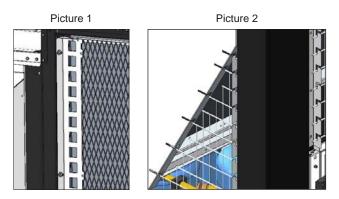
- Check that the drain is not clogged.
- Cleaning of the pan can be done with water and non-abrasive detergent.

Mixing boxes (optional)

In units with mixing box assemblies, it is advisable to check the condition of the servomotors of the motorised dampers.

Air coil

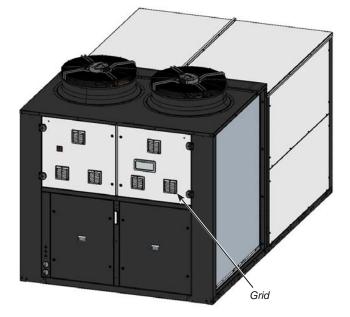
- Check that the coil is free from dust and grease.
- Cleaning the accumulated dust on the coil can be performed using a soft-bristled brush or a vacuum cleaner perpendicular to the fins or with a low-pressure water cleaner. Grease can be removed with water with degreaser. Do not put stress on the fins as they could deform.



Use safety gloves for this task. Take care with the sharp parts of the coil.

Protective grilles for outdoor coils (opiional)

The units can incorporate protective grilles for outdoor coils. These grilles must be removed to clean the coils.


- In models 0420 to 0720 (Picture 1) the grilles are bolted to the latetal pillars by M6 screws.
- In models 0760 to 1200 (Picture 2) the grilles are inserted by the slots arranged for this purpose.

Air filters in the grids of the electrical cabinet

- The appearance of the filters located inside of the grids must be examined periodically, because the clogged filters impede good ventilation.
- Cleaning can be done with a household vacuum cleaner. Replace them regularly.

G2 filters: 115 x 115 mm.

14 - MAINTENANCE

Air filters

• Depending on the installation conditions, the filter aspect must be examined to define the cleaning or replacing periodicity. Spare parts should be planned for.

The pressure drop data of the technical catalogue are given for clean filters. Cleaning the filters is very important to maintain the required available pressure of the unit.

On units with a clogged filter differential pressure switch, an alarm is triggered on the electronic control when the factory-set clogging threshold is exceeded depending on the combination of filters selected.

- Gravimetric filters (G4). Cleaning can be done with a household vacuum cleaner. Replace them regularly.
- Creased opacimetric filters (M6, F7 and F9). It is necessary to replace them.

Filter removal:

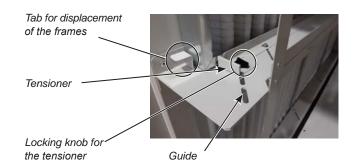
• The access panel to the filters features dual locks which can serve as a hinge or can be used to remove the panel.

Check that the locks are not blocked. Open the locks with a 4 mm Allen key (in an anticlockwise direction).

Caution: pay attention when opening the panel to avoid any damage to the siphon of the condensate drain.

• The thickness of the frames is 25 mm for G2 and G4 standard type; and 50 mm for the G4 low pressure drop and all opacimetric filters.

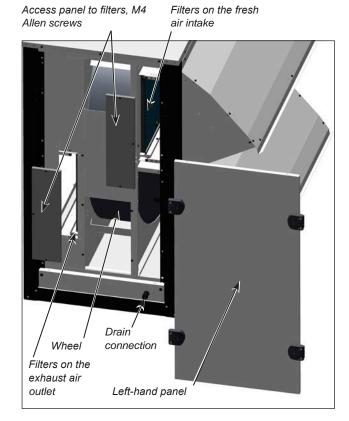
Filters supplied from the factory can be replaced on site by other types of filters with different thickness.


The filter holder structure supports the following filter combinations:

- 25 mm,
- 25 mm + 50 mm,
- 50 mm + 50 mm.

The filter holder structure incorporates a tensioner that can be moved along a guide to adjust the width according to the chosen combination. With the help of a locking knob, the position of the frames is locked after placement.

To extract the frames from each row, simply slide the tab.



Air filters in the recovery module

• The inside of the heat recovery unit module is accessed via the lefthand panel (front view), for maintenance tasks concerning the filters and the condensate pan. This panel features dual locks.

The access panels to the filters are secured using M4 Allen screws. The procedure for cleaning the filters is described In the preceding section.

This module features gravimetric filters G4 with low pressure drop, both on the fresh air intake and on the exhaust air outlet.

Centrifugal fan (optional)

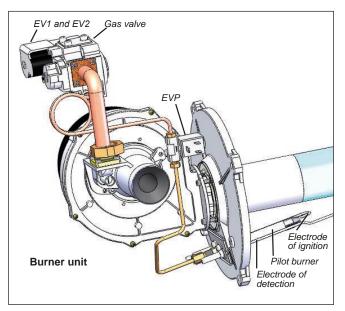
- Verify that the turbine and the motor remain clean.
- Foresee having a spare belt set for the fans.
- The motors and the fans have bearings that have been lubricated and sealed and, thus, do not need further lubrication.

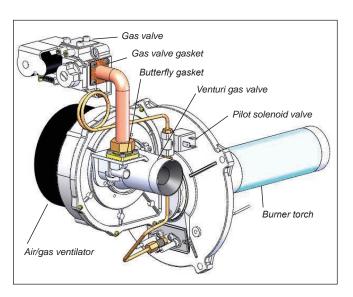
Gas burner

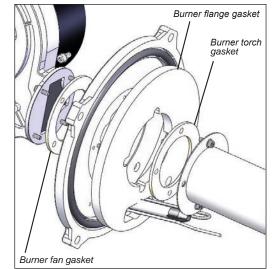
Only qualified staff are allowed to undertake maintenance tasks or resolve a breakdown.

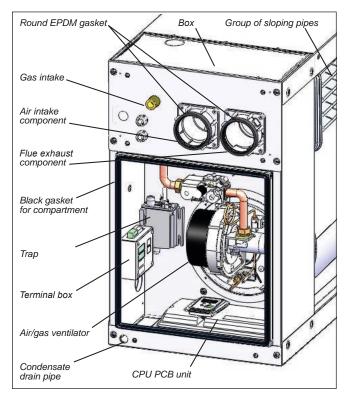
Pay attention to the temperatures of some components after operation. They could be very high (exchanger, flue exhaust, etc).

Hazard: Never use a naked flame whilst checking the burner. Never store flammable material in the machine room.

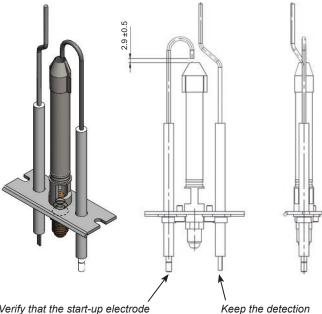

During the maintenance, the user must always strictly follow the instructions given in all the chapters of this brochure, as well as on the manufacturer's (APENGROUP) installation and maintenance brochure for the burners in the PCH series, supplied with the unit.


The maintenance and checking of the combustion must be performed in compliance with the legislation in force. Any modification or change in the material must be undertaken with the manufacturer's consent; the replacement of a faulty component for another non-compliant component could present a hazard for which CIAT could not accept liability.


To keep the machine efficient and guarantee a long lifetime of the heater, it is advisable to run some inspections every year, before turning it on for the season:


- 1) check the status of the start-up electrodes, detection electrodes and pilot flame;
- 2) check the status of flue exhaust and air intake ducts and terminals;
- 3) check the status of the venturi;
- 4) check and clean the exchanger and burner;
- 5) check and clean the water trap
- 6) check the intake pressure at the gas valve;
- 7) check the function of the flame monitoring equipment;
- 8) check the safety thermostat(s);
- 9) check the ionization current.

Note: Operations at points 1, 2, 3, 4 and 5 must be performed after disconnecting the heater from the electrical mains and closed the gas supply. Operations at point 6, 7, 8 and 9 must be done with the heater on.



1) Inspection of electrodes

Dismantle the complete pilot flame and use a jet of compressed air to clean the mesh and nozzle. Check the integrity of the ceramic and use sandpaper to remove any oxidation on the metal parts of the electrodes. Check the correct position of the electrodes (see drawing below).

It is important that the detection electrode is at a tangent to the head of the pilot and not inside it. The start-up electrode must discharge onto the mesh of the pilot burner.

Verify that the start-up electrode discharges on the external edge of the pilot burner

2) Inspection of flue exhaust and air intake ducts

Visually inspect where possible or examine with specific tools to learn the status of the ducts.

electrode at a tangent

to the pilot burner

Remove dust that forms on the air intake terminal.

3) Inspection and cleaning of the venturi

Remove any dirt at the mouth of the venturi with a brush, and be careful to not let it fall inside the venturi.

4) Inspection and cleaning of the exchanger and burner

Perfect combustion in PCH heaters prevents soot forming, which is normally caused by bad combustion.

It is advisable, therefore, to not clean the exchanger and burner unless there are exceptional circumstances.

An accumulation of soot inside the exchanger could be revealed by a sizeable variation in the heat output that is not caused by improper functioning of the gas valve.

Should it become required to clean the burner and/or exchanger, all of the gaskets mounted between the burner and the exchanger must be replaced.

5) Inspection and cleaning of the water trap

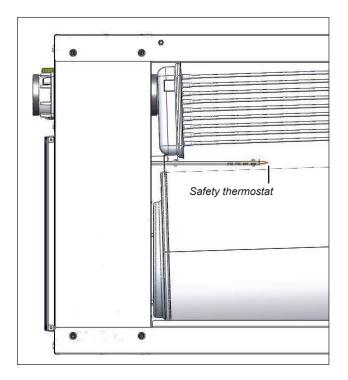
Clean the trap every year, and check the connections. Make sure there are no traces of metallic residue. If metallic residue has formed, increase the number of inspections.

6) Inspection of intake gas pressure

Verify that the intake pressure at the valve corresponds to the value required for the type of gas connected.

This verification must be done with the heater on at the maximum heat output.

7) Inspection of flame monitoring equipment


With the heater operating, close the gas tap and verify that the machine faults, signalled on the LCD display with code F10.

Reopen the gas tap, reset the fault and wait for the heater to start back up.

8) Inspection of the safety thermostat(s);

This procedure must be done with the heater on and the burner lit. Open the thermostat series with an insulated tool [230 V], remove the fast-on from the safety thermostat, wait for the F20 block signal to appear on the LCD display.

Reclose the thermostat series, then reset the fault.

9) Inspection of the ionization current.

This procedure can be done directly from the LCD display by entering into the I/O menu (password 001). The **IOn** parameter indicates the value of the ionization current, and the reading is as follows:

- 100, indicates that the value is more than 2 microAmperes, which is plenty for the equipment to function;
- from 0 to 100, indicates a value from 0 to 2 microAmperes; for example, 35 corresponds to 0.7 microAmperes, which is the minimum threshold detectable for the flame monitoring equipment.

The value of the ionisation current must not be below 2 micro-Amperes. Lower values indicate: the detection electrode in a bad position, a rusted electrode or one about to stop functioning.

Replacing the gas valve of the burner

If the gas valve must be replaced, it is required to proceed with an inspection and possibly calibrate the $\rm CO_2$ level through the adjustments on the Venturi pipe.

It is advisable not to calibrate the offset: the valve calibration is performed by the manufacturer.

If necessary, carry out the combustion analysis procedure as described in section "Analysis of combustion".

It is recommended to always carry out the flue gas analysis after replacing the gas valve.

15 - CONTROL AND ANALYSIS OF BREAKDOWNS

Symptom	Cause	Solution
Evaporation pressure very high in relation with the air inlet	 a) Charge excess b) High air temperature c) Compressor suction not air tight d) Cycle reversing valve in middle position 	a) Collect refrigerantb) Verify overheatingc) Verify compressor state and replaced) Check that the valve is not clogged. Replace if necessary
Very low condensation pressure	 a) Gas lack b) Compressor suction not air tight c) Cycle reversing valve in middle position d) Liquid circuit plugging 	 a) Search for leaks, complete charge b) Verify compressor state and replace c) Check that the valve is not clogged. Replace if necessary d) Verify the dehydrating filter and expansion valve
Condensation pressure very high in relation to the air outlet, high pressure switch cutoff	 a) Insufficient air flow b) Air inlet temperature very high c) Dirty condenser (does not exchange) d) Much refrigerant charge (flooded condenser) e) The condenser fan is broken down f) Air in the cooling circuit 	 a) Verify the air circuits (flow, filter cleanliness) b) Verify the control thermostat readjustment c) Clean it d) Collect refrigerant e) Repair f) Make vacuum and charge
Evaporation pressure too low (low pressure safety cut-off)	 a) Low flow in evaporator. Air recirculation b) Frozen evaporator c) Liquid line as different temperatures at filter inlet and outlet d) Gas lack e) Very low condensation pressure f) Evaporator fan broken down 	 a) Verify the air circuits (flow, filter cleanliness) b) Verify defrost c) Replace filter d) Search for leaks, complete charge e) Temperature of air or water in condenser very low (air or water flow very high), adjust flow f) Repair
Compressor does not start, does not make noise (humming)	 a) No power b) The contacts of a control element are open c) Timing of anti cycle short does not allow the starting d) Open contact e) Contactor coil burnt f) Indoor klixon open 	 a) Check differential, fuses b) Verify the safety chain of the electronic control c) Verify electronic control d) Replace e) Replace f) Wait for reactivation, verify current absorbed
Compressor does not start, motor sounds intermittently	a) Electrical power supply very low b) Power cable disconnected	a) Control line voltage and locate voltage drop b) Verify connections
Repeated compressor starts and stops	 a) Because of high pressure b) Control differential too short (short cycle) c) Insufficient gas, cut-off because of low pressure d) Dirty or frosted evaporator e) The evaporator fan does not work, cuts off the low pressure switch f) Expansion valve damaged or clogged by impurities (cuts off the low pressure safety) g) Dehydrating filter clogged (cuts off the low pressure safety) 	 a) Verify charge b) Increase differential c) Search for leak, reload unit d) Clean, verify evaporator air circuit e) Replace or repair f) Replace, as well as filter g) Replace
The compressor makes a noise	a) Loose attachment b) Oil lack c) Compressor noise	a) Fix b) Add oil to recommended level c) Replace
Noisy operation	a) Unit installed without antivibration protection	a) Place base over shock absorbers
Cycle reversing is not carried out: - No defrosting - Does not change winter - summer cycles	 a) Electrical fault b) Inversion valve coil defective c) Defrost method not working d) Cycle reversing valve in middle position e) Control fault 	 a) Locate and repair b) Replace c) Verify parameters d) Tap with running compressor. Replace if necessary e) Locate and repair
Alarm or reading error in the humidity probe (with enthalpic control)	a) Dirt in the humidity sensor	 a) Disassembly the probe encapsule. b) Proceed to clean the sensor with some soft cotton element and non-abrasive fluid, without pressing it. c) Reassemble the casing, checking that the cable is in contact externally with the metallic mesh.

16 - FINAL SHUTDOWN

Shutting down

Separate the units from their energy sources, allow them to cool then drain them completely.

Recommendations for disassembly

Use the original lifting equipment.

Sort the components according to their material for recycling or disposal, in accordance with regulations in force.

Check whether any part of the unit can be recycled for another purpose

Fluids to be recovered for treatment

- Refrigerant
- Energy transfer fluid: depending on the installation, water, glycol/ water mix.
- Compressor oil

Materials to be recovered for recycling

- Steel
- Copper
- Aluminium
- Plastics
- Polyurethane foam (insulation)

Waste electrical and electronic equipment (WEEE)

At the end of its life, this equipment must be disassembled and contaminated fluids removed by professionals and processed via approved channels for electrical and electronic equipment (WEEE).

Important: In order to recycle these units follow the stipulations of Directive 2012/19/EU on *Waste electrical and electronic equipment* (WEEE).

The quality management system of this product's assembly site has been certified in accordance with the requirements of the ISO 9001 standard (latest current version) after an assessment conducted by an authorized independent third party.

The environmental management system of this product's assembly site has been certified in accordance with the requirements of the ISO 14001 standard (latest current version) after an assessment conducted by an authorized independent third party. The occupational health and safety management system of this product's assembly site has been certified in accordance with the requirements of the ISO 45001 standard (latest current version) after an assessment conducted by an authorized independent third party. Please contact your sales representative for more information.

Order No.: 10574, 01.2025.Supersedes order No.: 06.2024 Manufacturer reserves the right to change any product specifications without notice.